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ABSTRACT

The control of linear systems with incomplete information is considered
where the unknown disturbances and/or random parametars are assumed to
satisfy scme statistical laws.

The observer theory for linear systems is developed which generalizes
the concepts due to Kalman and Luenberger pecvtaining to the design of linear
systems which estimate the state £ a linear plaat on the basis of both
noise~free and noisy measurements of the output variables. The Separation
Theorem for linear system is then extended for such observers-estimators.

The problem of contiolling a linear system with unknown gain is then
considered. An open-loop-feedback-optimal control algorithm is develcoped
which seems to be computationally feasible. Existence of such suboptimal
control scheme is proved under the assumption that the uncertainties in the
unknown gain will not grow in time. Convergence of such suboptimal control
system to the truly optimal contrecl system is considered. A computer pro-
gram is developed t¢ study the control of a variety thrid order systems
with known poles but unknown zeroes. The experimental results serve to pro-
vide vs with some more insights into the structure and behavior of the
open-loop-feedback-optimal control systems.

Thesis Supervisor: Michael Athans

Title: Associate Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

In recent years, deterministic optimal control theory has come tc its
full maturity. Text books [57], {43] have been written which are devoted
to the thecry and application of modern control theory. In deterministic
contruvl theory, it is assumed that the future effect of any presenc control
action is exactly known; this class of control problems is often called con-
trol with complete information [73]. In many situations, the necessity of
control arises from the fact that there are perturbing disturbances and/or
comporent failures in the physical system. These uncertain phenomena pre-
vent us te deduce exactly the future effect of all present actions, anrl
thus deterministic control theory may not be strictly applicable. The
classes of control problems where future effect cannot be predicted exactly

are called control with incomplete information. There are cases where the

uncertain phenomena can be zppropriately modelled as stochastic processes,
so stochastic models and stochastic control theory can be applied (4], [74].
There are also cases where the chance phenomena have no statistical regu-
lavity, in tliese situations, the game-theoretic approach [65] to obtain
min-max control may be more appropriate.

In this thesis we shall study come classes of problems with incomplete
information. Tirst we assume that the system beinz controlled is linear
{2icher discrete time or continuous time). The disturbance and random
parameters are assumed to satisfy some statistical laws. Ip the begiuning,
we assume that the only sources of uncertainty are the driving and/or obser-

vation disturbances. The statistical laws of disturbances are assumed to be

-1
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Xz, Inem, we shzll consiler the case where so=e para—eters of the systen
are uoknown but satisfy some statistical laws.
in Chzprer iI, scme cathexmatical preliminaries are collectad {ox esse

of refersmces. Provediliry theory is treated briefiy from a measure—

theoretic approach. Facts aSout iinear stochastic difference {and differaxa-
tizl) eguatiens, =md stochastic optimization problems are included for the
sa3ke of ccmplateness. The saczions on Gereralizesd Riccati Equations are
pew reszirs and will de usefvl in later discussions. The theory for ob-
servers for discrete time zna continvors time lipear systess is deveZoped
in CThapters III 2z=d IV. The conceptuzl Iremework is that an obsexvex is a
cevice which will sugply complexmearary infermation zbout all recoverakble
cacertainties. The cbsarver theory is applied to estimation probiems where
we have onily partial observation of che srates in the presence of observa-
ticn =cine which may be degenerarte or even totally singular. The resuits
wil: fncloude the Ealxman filter [39], [50} as a spacial case.

In Chapter YV, we considar the optrimal control of linear systea with
kacun dynarics wichh respect to quadratic criterion. The uncertainties
arise frex= &riving and/or observation disturbances with known staticstical
laus. One sach class of nroblams had been considared before by Joseph and
Tou [56], Streibvel i59] and Wonham [22]. They pade the assumption that the
observation noise is nondegenerate Gaussian white noise precess (see Section
2.2j. 1In this work, this assucption iz relaxed. It is assumed that the
cbservation ncise may be: 1) nondzgenerate Gaussian white noise, 2} de-
generate Gaussian white noise, 3) colored observaticn noise, 4) totally

singuliar (i.e., noise-free cbservations) or 3) the sum of colored and wite
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Gaussian noise. The apprcach follows that of Wonham's [22] and the tech-
nique is the dynamic programming method.

The control of linear svs.ems with unknown gain parameters is con-~
s.dered in Chapter VI. The open-loop-feedback-optimal approach is used to
derive a suboptimal control sequence which appears to bz computationally
feasible. The technique used is that of the matrix miniwmum principle. Ana-
lytical studics on the overzll suboptimal concrol syscem are carried out
and the asymprotic behavior of tite overall suboptimal control system is de-
rived. Computer simulations for some third order lirear systems were carried
out based on the theoretical results obtained in Chapter VI. The experi-
mental results are discussed in Chapter VII. Conclusions and some topics
for further research are iisted in Chapter VIII.

The perspective and comparison of this work with published references
are done at the end of each chapter. 1Im this contribution, we develop the
observer theory which provides a deeper understanding of the structure of
state estimators in the case of nondegenerate, degenerate, singular, or
colored observation noise. Th-= theory unifies some seemingly different
concepts of Kalman filter, Luenberger observer and exponential estimator,
and treated them in one general framework. Then we have the extension of
the Separation Theorem for such observers-astimators. Finally, we have de-
veloped the open-loop feedback optimal control algorithm for the linear
stochastic systems with unknown constant or random gain parameters; theo-
retical and experimental studies are carried out to this class of problems
which provide us with some insights into the structure and behavior of the

overall control system.

e



jldgy I a7

Trov_ape,

) e vt

ARSIl

g At e LA |
N

TN

(LRl 5 St e

RN SO AL

KL 14 g

ERAS SV AR St s & SV A TR

O R TN

AN VAEIRE I TS Ty a2l el ST )

T

s &

CLEL W LA PR

Notations:

Lower case underscored letters stand for vectors (e.g.. X, y); upper
case underscored letters stand for matriczs (e.g., A, B). Noisc distur-
bances are denoted by lower case underscored Greek letters (e.g., £, n).
Lower case letters with subscripts will denote components (e.g., xs will be
the i-th comporent of the vector X, aij will be the ij-th element of matrix
A).

The transpose of a matrix A is denoted by A’. The transpose of a

column vector, X, is a row vector and is denoted by x'.

Let A be an nxn square matrix; the trace of A is defined as

n
tr A = Z aii .
i=1
Let H(xn, X1gs +ves xnm) be a scalar function; we shall denote it by

H(X). The gradient matrix is definad by

3H () _ SH(xll, ooy xnm)
2x %, . :
A ij

Mnm will denote the set of all nXm .~atrices.

Rn will denote the product space of ordered n-tuples of real numbers,

we shall denote the elements in Rn by column vector x.

I will denote the set of all integers and I[i . will denote the cet of

b

integers {i, i + 1, ..., i}, 1 £ j.
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CHAPTER 11

MATHEMATICAL PRELIMINARIES

2.1 Introduction

The purpose of this chapter is to introduce the mzthematical results
which will be used frequently in the later chapters. Soze of these results
are known in the iiterature while soo2 are due mainly ro the autvor.

In Section 2.2, probability theory is treated briefly using the
measure-theoretic approach. Except for the precise basic definitioms, the
treatment is physical rather chan mathematical. ¥For a detailed aad rigorous
mathematical treatment, see Doob {1] and Loeve [2]. A rigorous mathematical
consideration on conditional expectarion aad conditional distritution of 2
random vector is given. In the opinion of the author, a thorough under-
standing of these concepts is vital in most stochastic optimizaticn problexs.

Tn Section 2.3, linear stochastic difference and differential equations
are treated to the extent that some of the discussions in later chapters
will require for the szke of compieteness.

In Section 2.4, the matrix minimum principle and optimality criteria
ire considered to some detail. The matrix minimum principle can allow us
to deduce the necessary conditions for cptimality for sowc special problems,
whereas the optimality criteria provides us a test to see whether a certain
solution is optimal.

In most control and filtering problems, we shall encounter a matrix
Riccati Difference or Differenrtial equation. To foresee there generalized
matrix Riccati difference and differential equatijons are investigated in
detail in sections 2.5 and 2.6. The results obtained in these sections

are new, while the approach follows that of Wonham's [32].

-5
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frox Sectior 2.2 to Section 2.4, the resultc are known. Th2 discus-—
sions In thaese sectioas are by »o mesns exhaustive: detailed references
are given in Section 2.7 to irndicats where more exteasive resulzs can be
found.

2.2 Proksbiliry Theory

Definition 2.2.1: L2t I be a sex. A s-aligebra (Rorel Field, s-field} on

R, F, is a class of suvbsets of I, such that it has the following properties:
2) =¥

) IfAcTF, cthea ae F

c) Ifx e¢F,i=1,2a, ..., then
=
(-
U a, ¢t 5 N Ai £t F -

3=l i=1

The pair (2, £) consisting of 2 set ©? and a c~field F of subsets of &

—

is czlled a measurable space. The elecents of 7 z-e called F-ceasurable

sets, or just zeasurable sets if rhere is no ambiguity. In probebility

~

theory, the set . represents the sa2zple space, and F represents the collec-
tions of possible events.

Definition 2.2.2: Let (&,, F,) and (92, Fz) be two measurable spaces. A

napping f of 21 onto 22 is said to be measurable if it sati<fies the condition:

£ {8 ¢ Fl for every A ¢ Fp .

Defipition 2.2.3: Let 2 be 2 set, and (fi)irl a family of mappings of 1

into measurable spaces (92, Fi)iel' The o-zlgebra generated by (fi)igl is

the smallest o-algebra on Q with respect to which all functions (£} re

. a
iel

measurable, and is denoted by F(fi, ie I).

"a¢ denotes the complement of A.
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From the above two definitions, we see that if F' is the s-algebra

generated by (f;). . then

jer' 2 el

F* € F" if and only if I' € I" vhile I' and 1" are both countable.

nd F" is the o-algebra generated by (fi)i

In general, a basic measurable space (9, F) is assumed to be given
which describes the underlying uncertainty of random phenomena. Such a
measurzble space is of an abstract nature; how the uncertainties revezl
themselves depends on the type of experiments we perferm te obtain cbserva-
tions, the outcomes of which we usually referred to as statistics. In ab-

stract mathematical formulation, we let (2 Fl) be another measurable

l)
space, where we call 21 the observation space and Fl the collections of all
possible obhservations. A measurable function, £, from @ to Q. is call-d the

1

observation statistic. Let F ¢ F be a sub-0-algebra, an observation

statistic, f, is said to be F-measurable if F(f) CF. Special cases of

. < s n
observation statistics are random vectors (Ql = R") and random processes

&

1 is the set of functions defined on {[o, T] with values in R™).

Definition 2.2.4: Let {Q, F) be a measurable space. A probability law

on this space is an abstract positive measure . defined on F,T and having
u(2) = 1. The triplet (Q, F, ©) is called a probability space.

Let (2, F, u) be a basic probability space, and let (Q Fl) be another

1’

measurable space representing the observations with a sctatistic f which maps

2 onto Ql. We can define a probability law on (& Fl) by defining

l’
uf(A) = u(f_l(A)); Ace Fl. We shall call Mg the statistical law of u under

f; this law is also called the law of distribution of the statistic f.

‘u(+) is a set function defined on F with the property of countable addi-
tivity, i.e., if An € F, n € I, are disjoint, then we have

s(U )= T oufy) -

¢4 n
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Definition 2.2.5: Let (2, F, p) be a probability space, let Fl be a sub-~

g-field of F, and let x be an integrable real-valued random vector. A

conditional expectation of x relative to Fl is an integrable Fl—measurable
real-valued random vector y such that
{
J x(w)du(w) = J y(w)du(w) for every A ¢ F, . (2.2.1)
E\ A

By the Radon-Nikodym theorem, such a random vector, y, exists and is unique

a.s. (almost surely): i.e., if y' is another random vector satisfying

(2.2.1), then

plo: y@w) =y'w} =1 . (2.2.2)

For this reason, we may simply write such y as E{ﬁlFT}. The conditionsl ex-
pectation of tbe indicator of A ¢ F with respect to F, E{IAIFI}, is also
called the conditional probability of A reiative to Fl. Note that this

"probability" is a random variable defined up to an a.s. equality, and not

a number.

Lemma 2.2.6: Let (2, F, u) be a probability space. Let Fl, Fz be sub-o-

algetra of F with F, ¢ F,. Then

1 2
E{E{XJFZH Fl} = E{EJFI} a.s. (2.2.3)

where y is any u-integrable real-valued random vector.

Proof: By definition 2,2.5, we have for all A ¢ Fz

j EijFz}du = J y du . (2.2.4)
A

By assumption, Fl«: Fz, therefore (2.2.4) holds for all A ¢ F Therefore

1
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I E{efy[F }| P fau = [A E{yiF,}du =
A
(2.2.5)

y du = f E{v|F }du ; AcF .
oo g ae

Now (2.2.4) follows from the a.s. uniqueness of (2.2.1).

Lemma 2.2.7: Let (2, F, u) be a probability space. Let F, be a sub-o-

1
algebra of F. Let y be a u-integrable random variable and x is a Fl-
measurable random variable, then
E{xylFl} = x E{ylrl} . (2.2.6)

Equation (2.2.6) is true when x is a simple function, and the general casz
follows using the approximation procedure. For a detailed discussion, see
(1], f2].

Let f be an cbservation statistic on 2; i.e., £ is ¢ measurable func-
tion from (2, F) onto (Ql, Fl). Let F(f) be the o-algebra generated by f.
Such a statistic induces a conditional probabilicy E{IAIF(Q}on F. 1f there
exists a function Pf(A, w) such that for each w ¢ @, Pf(A, w) defines a

probability measure on F and for fixed A ¢ F,

P (A, w) = E{L,|F(D)}  a.s. (2.2.7)

then Pf(A, w) is called a conditional measure on F relative to the statistics

f. Unfortunately, such Pf(A, w) may not exist, and so it may not always be
possible to define o conditional measure on F relative to a certain sta-
(1]

tistic. Let g be another statistic and F(g) is the o-algebra generated

by g. If there exists a conditional measure defined on F(g); i.e., if there

is a function Pf(A, w) such that for each weﬂ,Pf(A,w)defines a measure on F(g),

Y

e e

-
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aad for fixed A ¢ F(g)
P(A. w) = E{L,[F(D)}  a.s. (2.2.8)

then one can define the law of distribution oi g in the regular manner.

(1]

Doob had prcved that if the statistic g is a random vector (say y € Rp)
then the conditional measure on F(y), Pf(A, w), A € F(y), exists and so the
conditicnal distribution of y is well defined {a.s.). Let us denote the

conditional distribution by Pf(X, w) which defines a conditional measure

on the Borel set of R through y. If ¢(y) is a mezasurable functior of n-

variables w.th values in Rm, then almost surely, we have:ll]
roo 0
E{@(y)lp(f)} = J_m.., f_:(z) Pf(dyl e dy w) . (2.2.9)

We can visualize F(f) as the o-algebra which contains, in a loose sense,
all the statistical information conveyed by the observation statistic about
the total underlying uncertainty of the basic sample space. On the other hand,
the conditional measure Pf(A, w), A € F(y), describes the statistical infor-
mation of f{ conveyed about the random vector y. In view of this intuitive
interpretation we have the following definitlion.
1’ FZ and

F3 be sub-o-algebras of F. F1 and F3 are sald to be conditionally iandependent

relaéive to F2 if for any random vectors, 11 which is F

Definition 2.2.8: Let (R, F, u) be a probability space, and let F

1—measurab]e, and.y_3

which is F3-measurable; we have

E{y, 2315, } = E{y; IR, } E{y3lF,} . (2.2.10)

Let fl, f, be two observation statistics; fl and £, are said to be

2
independent if F(fl) and F(fz) are conditional independent relative to

2

F, = (¢, @), or we say F(fl) and F(fz) are independent.
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Let (2, F, u) be a basic probahbility space, and let y be a rarndom n-

vector on Q; this induces a law of distribution on R® through the statistic

y. Llet F, CF such that F and F(y) ic independent relative to F

1 2
Then for arbitrary B € Fy, we have for A € F(y), and ¢(y) measurable in R":

= {6, 0},

Jf E{g(x)h‘l} du J $(@y) du = I I &(y) du
B B Q

[ dp [g(x) du (2.2.11)
B ‘Q

jB (jg &y du) du 3¢F .

Therefore, we have
z{¢(y_)lpl} = J ¢(y) du  a.s. . (2.2.12)
Q

In particular if ¢(y) = IA’ A e F(y), then (2.2.11) and (2.2.12) become
w(@NB) =u@ p® ;  E{LIF}=u@ as. . (2.2.13)

This imglies that if F} and F(y) are independent, the conditional distribu-
tion of y relative to Fl is the same as the unconditional distribution of y.
Fhysically, this says that Fl reveals no informatiorn about y. In many cases,
I-‘l is generated by some observation statistics, fl’ cevs fn; so if y is in-
dependent of Fl = F(fi, i=1, ..., n), this means that the observation of
fl, cees fn reveals no statistical infcrmation about y.

Let x be a random vector defined on the basic probability space (2, F, u).

X is called a Gaussian random vector if it has the distribution law. (3]

uX(A) - 3 { exp —% (x - m' 5'1(5 ~m) dx (2.2.14)
|212]% xea
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E{(x~m)(x~-m'}
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ne
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1%
Nyt
]

j x(w)u(dw) ;
Q
(2.2.15)

J (x(w) ~ m) (x(w) - m)"u(dw) .
Q

m is called the mean or expectation of the random vector X, and I is called
the covariance matrix of the random vector x. From (2.2.14), we see that
the statistical law of a Gaussian random vector is specified completely by
its mean and covariance. We shall always denote a Gaussian vector with mean
m and covariance I by the symbol G(m, I).

Two Gaussian vectors %, X, are independent if and only if[3]

e

Efx, x5} Jﬁl(w)ﬁé(w)ll(dw) = Jgﬁl(w)u(dw)Jgg(m)u(dw)

Q
(2.2.16)

Y I £

Let x(t), t € [to, Tj, be a random n-vector process defined on the
probability space (2, F, u). x(t), t ¢ [to, T], is called a Gaussian random

n-vector process if for any finite set {tl, ey tm}, ti e [0, T] the vector
x(w) = .
l{_(tm’ w)

is a Gaussian random nm-vector.

Another observation statistic which we shall consider in the later
chapters is the "Gaussian White Noise Process.”" Different interpretations
of this kind of process are available. One may view it as a formal deriva-

(4] (5]

tive of a Wiener Process, or as a generalized random process where the

observation space is the set of linear functional on the class of test
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functions. We shall not consider these interpretations in detail; ro

! A WA e

matter what interpretation one adapts, 2 Gaussian White Noise, £(t), has

ALl

the following properties:

t

. 1) I £(t)dt is Gaussian for ali t € [to, T] with mean
t
0

t t
[ m(xr)dT and covariance J R(z)dt, R(1) is measurable and

, "t %o
T in L2 locally.
;tl t:2 tn
2) J £(t)dr, J E(t)dT ... J E(t)dT, Eg € By eee S E S T,
% & a-1

are independent.
Let Ft be the o-algebra generated by £(1), ty 21 2t, then (2.2.12) and

i the properties of Gaussian White doise imply that

; [° . ¢ .
1 E{l g(dr|F } = [ m(r)dt (2.2.17)
. be = S

la}

E{([cg(r)dr - Jom(r)dt)(Jog(r)dr - J
t

o
m(r)dr)'IF} = j R(t)dt . (2.2.18)
‘t t t

t t

2.3 Lirpear Stochastic Difference and Differential Equations

Consider a discrete.time linear system described by
x(k + 1) = A(k) x(k) + g(k) H k=20,1, ... . (2.3.1)

A Let (2, F, u) be the probability space which describes all the underlying

uncertainties. Let x(0), &(k), k = 0, 1, ... be independent Gaussian vectors

with statistical laws:

TEryY

3 Cakreuod T
N S

e

D




(2.3.2)
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Frem (2.3.1), since A(k) is ligear transformatien, x(k) is aiso 2 Gaussiaa
{3}

vector, k=0, 1, ... Lzz £ be some statistic ¢n (&, F, »), 2nd let

e

E F{{) decote tha c-~algedbrz by £. Suppose that { is indepaadenc of (i),

E =g, k¥, ...; then for £ 2 &, by (2.2.12), we nave,

2 + 1{f) = 2()2(ilE) a.s. ; x{i:f) 3 Elx(DIF(D) (2.3.3)
E:

3

- ané

'%

3 ,

2G F 1iE) = AQ)EGE DA (E) £ ’lE) a.s.

(2.3.58)

o
Jen

”~~

[

R

a]

) = Efx(idx' (i) F{D)} .

Using (2.3.5) ard (2.3.3), the conditional covariance of x(i) relative to

7(£), denorad by I (i!f), will satisfy

L)
”\
"
sfe
(L]
Iy
ot
L]
jus
L)
(™)
A
jty
n
Ay
[0
)
o
D
Lan)
[
St
e
)
~~
[
[
.
"
-

A R . (2.3.5)

it oA b bt Y DI AU R e L $0010)

In addizien, if the conditional distribution of x(k) relative to F(f)

N

S

paktals

Gaussian, then for &*1 £ 2 k, x{i) is a conditional Gaussian vector relative

to T(f). The stztistical information of the statistic f is contained in

cqltd g3k |y

F{f), but the nz2cessary statistical information of f about the uncertainty

LN ML $1g

of the future state of the system, x(i), i 2 k, is contained in the con-

TRTTRYI

ditional distribution of x(k} relative ¢c F(f); and if it is Gaussianm,

~713

VST

&(kjf) and £(k,f) completely specify the conditional distribution of x(i),

i 2 k, relative to F(f). This is also referred to as the Markov property.

F L Ly et bt @it
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In the above discussion, the observation statistic is coopletely
generai. If the observation statistic is linear in x(j), j =0, 1, ...; k,

and some other Gaussizn vectors, &.g., £ = {y(0), ..., y(k)}, and

y{i) = C(2) x(i) + n(3) i=0,1, ..., k (2.3.6)

wvhere ~(i) is F-measurable, independent of £{(j), j 2 k and of Gaussian
statiscical law, i =0, I, ..., k; chea x(x) is conditional Gaussian rela-<
tive to I—‘(f).["] There ==y be ocher kinds of statisrical observatioms
which will induce 2 conditiomal Gaussian iaw oa x(k%), dbut in this thesis, we
shzll onply consider observatica statisrics of the type given by (2.3.6).

Coasider 2 coatinuvous linear stechastic systen described dy
x{t) = A(e) x(r) + 5(¢) (2.3.7)

wher2 A(-) is oeasurable in t, znd is locally bounded.
Let (2, F, .) be the basic probability spzce where _:5(:9), £(2),
t < [to, T) are staristics defined on L. Tae solution of {(2.3.7), x(t),

is defined a2s 2 prccess which satisfies the integrai equation

(o]

g
A@x()dr + | a()dr ; Tz [ty T (2.3.8)

0 )

Let £(t) be a Gaussian White Noise Process with

x(t) = x&4) +

Noma s oy

2
ef] £()de} = ; < €, £ T 2.3.
;)f idl=0 5 oy S < ST (2.3.9)
t, L
1
;‘2 L2 5
ef(] za)(] z@ar) =l r@ar 5 5 S < sT L (2.3.10
! ! t
From (2.3.8), we see that for T 2 L, >ty 2 T
;tz rtz
x€) = x(e) + 1AM+ D far (2.3.11)
- ‘t. ‘t
i 1
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We shall always assume chat_i(co) and §{:), 1 ¢ [co, tj, are independent

for all t > ty- Therefore §(c1) is independent of £(1),

all ¢ > tl. We can find the solution of (2.3.11}), x(3),

successive approximation: ¢t € [tl, T]

~

€ [tl, t], for

-l

T 3
€ [tl’ ‘]) bl’

t t
g:ﬂ(t:) = 5((:1) : il(t) =x()) + J é(f.)_:_cﬁ:r)dr + J £(t)dr (2.3.12)
t t
1 1
and
] {t o
gn\t) =.§(t1) + ], é(t)§n_1(r)dz + jt £{z)dr n=1,2, ... . (2.3.13)

1

By the assumptions on A(*) and R(*), this procedure will coaverge with
55(:) - x{t), t e [cl, 1] a.s., 2nd x{t) satisfies (z.3.11}.

Let f be an observation statistic such that F(f) and F(§(3). 7 ¢ [tl, ™
are independent. Suppose thart the conditional distributisn of §(t1) rela-
tive vo f is Gaussian. Then from (2.3.12) and (2.3.13), we see that the

conditional distribution of En(t) for a fixed t ¢ [t., T] is Gaussian rela-

1’
tive to f, n =9, 1, ..., thus x(t), for a fixed t ¢ [:1, T], which satisfies
(2.3.11) is also conditionally Gaussian relative to F(f). Therefore the
complete statistical law of x(r) relative to f is described by its condi-
tional mean and covariancs.

From (2.3.13), we see that for alln =1, 2, ...
1 [’n-l

t
E{zn(t)lf‘(f)} =§;+[ é(zl)f AG...

tl tl ‘ tl

é(?n)drn...dzl}°E{§(tﬂ !F(f)} a.s.

(2.3.14)
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e{x (0)x’(t) F(D)} =
4} -
f ‘t lr:l i,rTn-'l .
3 (1+ a6y é(?z)...}t é(:n)dfn...dtl)'E{_)_t(t.n)_ng ) F(H)}-
f1 ‘1 1 ‘
v t 1 {‘n-l t
2 . ; 7, ) T AG )dr_...d7 R(7)dz
g N J +L R(2)d
] 51 51 1 1
1 -t ;cl ¢ n-2 fcn—l
3 c 3 : A ; (e ...dc
i(“l)_' f‘=(°2)"',, ,-.(cn_l):t R(c }do i
‘1 91 ‘1 1 ,
rt 1 ;52—2 ;Sn-l
: (ot c ’ fo] ~ = o . . 2.3.13)
: ( .-,(,.1)' A18,)- - ‘. A( n_l)Jt 3("::)6":2"'“1) a.s {2.3.15
01 ‘1 1 1

Since x_(r) - x(t) a.s., Eign(t)‘F(f)} ~ Eix(t) F(f): a.s., a1d
E’En(t)ig(t)}F(f)} ~ Efx(t)x' () 'F(f): a.s. Equations (2.3.1%) and (2.3.15)

imply that as n ~ =, E{x(t) F({)! and E{x(t)x"(t);F(f)} satisfy (a.s.):

2(e!F(£)) = A(t)x(t F(£)) t2t i 2(z'F(£)) £ Eix{t) F(f)} (2.3.16)

t
~~
(a4
.', )
~
n
~
~—r
It

AOIEIFE) + LEIFENA(R) +R(x)  t2t

.

1

(1]

S(eiF(E)) & Eix(o)x"(0)iF()} . (2.3.17)

The conditional covariance of x(t), t 2 tl’ denoted by Zc(t;F(f)) will then

satisfy

EEIRE) = A@ZSEIFE) + I5EIFENA () + R as. 5 t2g) . (2.2.18)

In the above, the cobservation statistic is completely general. I1f the
conditional distribution of x(t,) relative to f is mot Gaussian, then x(c),
t 2 tl, will not be Gaussian for arcy fired t; however the conditional mean

1 and covariance of x(t), t 2 t)» are still given by (2.3.16) and (2.3.18).




FLROS SRR~ S A RANA S B 0 aan £ 4.0 E8H

o i

biad

ety

ta

Sl T

-18-

in this thesis, we shall ass:—e that the observaticn statistic is of the

forz

7(t) = C€(x) x(c) + n(r} , t ¢ {tG, T (2.3.19)

(4]

where a(g), ¢ [to, T} is Gaussian white poise with

2
s{[ a(x)dz }- 0 (2.3.20)
-* :1
t t ¥ t
2 2 . 2
E{( g‘ a(: )d:)(J _-1(7)&:) } = j Q(z)dz (2.3.21)
1 Y ‘3

ané n(c), ¢ < [:0, T) is independeat of £{t), t ¢ [te, T}, and §(t0). Rich

such observation statistic, we see that ?t 3 F(x(z), T ¢ i'th’ tl]) is inde-

1
ES

1 T); furtherzmore _:_‘c_(tl?}‘t ) is F_ -reasurable and
3 1

} is conditionally Gaussian if 3.:(:0) is Gaussian.l%] 1f

pendeat of £(3), T = [t
E(t'l“’:

t.<t, <t

... €< £t , we have
(4] 1 2 n’

In the more general nonlinear case, the system is described by
x(t) = £(¢, x(t)) + £(¢) (2.3.22)

where §(t), t ¢ {t,, T}, is a Gaussiar white noise with statistical law

0
(2.3.9), (2.3.10), and £(r, x(t)) is F((3), © € {co, t])-measurable, the

solution of (2.3.22) is defined as the process which satisfies

49 t

x(t) =_§(to) + ! £(z, x(1))dx +I £(z)dt a.s. te [to, T] . (2.3.23)
‘t t
0 0

£ f(t, ) satisfies the Lipschitz condition




[t e

‘:ﬁ(t, 51) - g(t, 5;) < 3;:£1 X5 Xy Xy € R" (2.3.24)

T

LAl

where 2 is some constant; then the method of successive approximation by

TS

setting x(t) = E(to) and

r rt
x (€) = x(ty) + J: £ gy ()dv+ | g@Ddr n=1,2, o (2.3.25)
; i o
J will converge almost surely to x(t), as n» -+ m.[6] The interpretation we

used here is Itd's; the reason for adapting this interpretation is due to
the rich mathematical properties one can deduce and utilize by using this
interpretation. Ité's theory in stochastic differemtial equation will not
be considered in here, the detail can be found in [1], [7], [8].

Let x(t) be a process described by (2.3.22) or (2.3.23)% x(t) is

called a diffusion process. Let C{+, *) be defined on T xR® with

real scalar value, such that Qx(t, x), Ct{t, x), and gxx(t, %) are defined
and continuous. The differential generator of x with respect to C is de-

fined by

ne>

£(C(t, ) & lin(s - ©) 7 E{c(e + at, x(t + 88)) - c(t, x(t)|x(e) = x}

s+t

(71, 18] (2.3.26)
If x(t), t e [t,, T], satisfies (2.3.22), then "%’

{Rllz /

£eete, 2 = 7 e 30 e e, pRMA0F + £, e 6, 0 L (2.3.2)

If in addition,

2 A
el + Jed + dxlie, |+ ixltle ) S k(1 + 1xi%) 5 ¢, » e T
(2.3.28)

- e




then
-t
C(t,x(£)) = C(eHx ()t i [&C(r,x(1)) + C_(1,x(1))]dr
1
rt , o
+ 'tigx(.zi(t)) £(t)dr {2.3.29)

where now the last integral must be interpreted in the sense of Ité.tl?x

Let Fl be the sub-c-algebra which is independent of F(£(x); 1 ¢ [cl, T1).
[4]

Since

t
E{[t gx(z, E(r))’_g(r)dT!Flg =0 (2.3.30)

1

we have from (2.3.29) the Itﬁ's integration formula:[l7]’[4]

t
Efc(e.x(e)F, } = EfC(e,,x(e F, } + E{J [£cr,2(:0 + ¢ (1,x(0)]dx|F }
! (2.3.31)

T

2.4 Stochastic Qptimization

In this section, the mathematical tools for stochastic optimization

AEIE 2250k BN sl SN

¢-wblems are stated, and the outline of the proofs will be given. These

stochastic optimization techniques will be used in later chapters to solve

T T

ERE

different stochastic control problems.

MR FLls

Since we shall be considering linear systems with Gaussian disturbances,
the process which we shall control will be Gaussian. Thus an adequate de-

scription of the process is the evolution of its mean and covariance. As a

I

result, we shall deal with a set of deterministic equations which describes

the "trajectory"” of the mean and covariance. In many cases, we can transform

har s
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a linear stochastic control problem into a deterministic control problen
where the dynamics of the deterministic system are described by a set of
matrix and vector differential equations. After making such transformation,

the technique cf the matrix minimum princinle can be used to obtain neces-
(91, {10]

sacy conditions for optimality, in che following way.

Discrete Time Control Problem:

A set of matrix and vector difference equations is given:

X+ 1) - X0 = E(k,X(K),2(),0(K)
 k=0,1, ..., N-1
PR = By x() =y ZrRD)

x(k + 1) - z(k)

£(k,x (k) , X0, 2(K))

M}

with U(k) € S, constrained coantrol set, X(ky ¢ ¥ , x(k) ¢ RP. Consider the

nn
scalar cost:
N-1
3= KEM.2M) + > LOUE)LER,x0) (2.4.2)
k=0

It is assuvwed that F(k,*), f{k,*), K(-) and L(k,*) satisfy the conditions

(33]

required by the discrete minimum principle. The control problem is to
*
chvose U (k), K =0, ..., N~ 1, such that the cost (2.4.2) is minimized sub-
*
ject to the constraint (2.4.1) and U (k) ¢ S, k=0, ..., N - L.

Define the Hamiltonian function
H(X(k),x(k),P(k+1),p(k+1),U(k)) & L(k,U(k),X(k),x(k))
(2.4.3)

+ £ (k,x(k),X(k),U(k))p (k+1)+tr{F(k,X(k) ,x (k) ,U(k))P'(k+1)}

where P(k), p(k) are the costate associated with X(k) and x(k) respectively.
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Theorem 2.5.1: (Matrix Minimum Principle: Discrete Time)

Let gf(k), k=0, ..., N - 1 be the cptimal control and gf(k), Ef(k),
k=0, ..., N be the optimal state?! then there exists a costate matrix
gf(k) associated witl Ef(k), and a2 costate vector gf(k) associated with
§f(k) such that the following relations hold:

1) Canonical Eguations:

* .y ____oH . ey = 38 ]
X(k+l)-X()-= Bk + DI, ° x (k+1) - x (k) ap(k + 1)|*
* * _ _3}1_‘_ . * _ * - _ _35_
P(k+1)-P (k) =- x|, * P (k +1) - p (k) ax ()|,
{2.4.4)
2) Boundary Conditions:
@ %y 5 x© =x (2.4.5)
* KK () ,x (N * KK ()% ()
P = & ),x (N)) . P = &E M¥),x () (2.4.6)

3K (W) ax (M)

3) Minimization c¢f the Hamiltonian:

For every U e S, and fecreach k=0, 1, ..., N -1

u(x" 00 ,x" 00,2 (k1) ,p" (041,07 00) = (8" (0,27 (0,2 aerD) ,p" (Get1) 1)

(2.4.7)
Continuous Time Control Problems:
A set of matrix and vector differential equations is giver:
R(r) = E(t,X(8),x(c),U(8)) 5 X ¢, = X,
\2.4.8)
x(t) = f(e,x(t),X(t),U(L)) z(to) = X
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with U(t) ¢ S, constrained control set, X(t) ¢ Mo x(t) ¢ RP. Consider

the scalar cost:
[T
J = KX(T),x(T)) + ; L(t,X{t),x(t),U(t))dt ; T fixed . (2.4.9)

The usual differentiability conditions for F(:), £(-), K(*), and L(*) axe
*
assumed to be satisfied. The control problem is to choose U (t), t ¢ [tO, T],
such that he cost (2.4.9) is minimized subject to the constraint (2.4.8)
*
and U (t) € S.

Define the Hamiltonian function

H(X(t),x(t),P(t),p(t),U(t)) & L{t,X(t).x(t),u(e)) +
(2.4.10)
£1¢t,x(t),X(e),L())p(t) + ex{F(t,X(2),x(t),U(c))R' ()}

where P(t), p(t) are the costate associated with X(t) and x(t) respectively.

Theorem 2.4.2: (Matrix Minimum Principle: Continuous Time)

% % %
Let U (t), t e [to, T}, be the optimal control and X (t), x (t),
* *
t e [to, T], be the optimal state, then there exist costates P (t), p (t)
such that the following conditions hold:

1) Canonical Equations:

* dH ¥ o1

X (r) = R0, ;X (t) = (0 . (2.4.11)
. % _ 3H L e* _ _ _o°H
g. (t) - Bg(t) . y P (t) = 3_)_!((:) N (204-12)
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2)  Boundary Conditions:

f(co) =X }_*(to) = %, (2.4.13)
% K(X (T),x (T)) x K (), % (T))
PAT) = —= 2= ; p (T) = LR (2.4.14)

* . x
3X (T) ax (T)

3) Minimization of the Hamiltonian:
* * * * % ;i Xk * ® . *
H(X (£),x (£),2(8),2 (£),U°(£}) < H(X {e),x (£),27(£,p (6,1 ) @.4.15)

for all Ue Sand t ¢ [to, T].

The matrix minimum principle (both discrete and continucus) is a just straight-
forward extension of the vector minimum principle, Holtzman and Halkin
[33], Pontryagin, et al. [11]. Theoretically, the justification of the
matrix minimum principle hinges on the existence of a mapping from Mnm to
R™™. The details were carried out by Tse [9]; see also Athans [12].

The matrix minimum principle only provides us with necessary conditions
for optimality. A control and its corresponding state trajectory which
satisfies the matrix minimum principle will be called extremal control and
extremal state trajectory. If one can prove the existence of optimal con-
trols and the uniqueness of extremal controls, the matrix minimum principle
also served as a sufficient condition for optimality. But, in general, the
matrix minimum principle does not provide sufficiency. It will be convenient
if one can have some sufficient conditions fcr optimality, so that one can
easily test to see whether an extremal control is optimal or not. It turns
out that to look for sufficient conditions, it is often easier (and more

general) if we consider the original stochastic control problem without

transforming it to deterministic description in terms of mean and covariance.
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Discrete Time Stochastic Control Problems:

A discrete time stochastic process is described by
xk + 1) = £(k,x(k),ulk)) + £(k) k = ko, ko +1, ... (2.4.16)

with x(k) € R?, u(k) = R'. Let x(0), £(k), k =0, 1, ... be independent
Gaussian Vectors defined on the basic probability space with statistical

law (2.3.2).

Let U(k,, k) & {g(ko),g(ko + 1),...,u(k)} denotes the control sequence,

0’
and g(ko)s 8(k0 + 179_(k0))’ g(xo + 2)U(K0’k0 + l))) e v g(ksu(kg’ k - l)l’

. is a sequence of observation statistics which depends on control se-

-

quence, such that for all control sequences F(k,U(kO,k - 1) <Pk + L,U(ko,k)),
N
) - ~ 4 - 3
where F(g(&,U(ko,k 1); & F(k,U(ko,k 1)). Let {Eﬂ(ko,k-l)(k)!k=k0be the
process described by (2.4.16) when control sequence U(kO,N - 1) is applied.
Ascsume that ZU(kO,k—l)

is restricted to be of the form:

(k) is F(g(k,U(kO,k - 1))-measurable when the control

u(k) = i(k,g(k,U(kO,k - 1)) esSs (a.s.) . (2.4.17)

. . * *
The control problem is to find air optimai control law ¢ (k, U (k,o,k-l))

such that
N-1
3N - DIFe(k) = B{REGAN) + > Ll,x) ) [Feky)} (2.4.18)
k=k
0

is minimized subject to (2.4.16).

Theorem 2.4.3: (Optimality Criteria: Discrete Time)

* n
Suppose that there exists a control strategy ¢ (i,+): I XR =+ S
[koiN"l]
n
and a scalar function C(+,*): I[y N—l]XR - Rl such that almost surely,
“0°

1)  c@,x) = K(x) (2.4.19)

e i v bl vy
B PHERGNSMNGREA
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- * * ] -
2) 0= E{L{k,x,2 (k,x))*C(k+1,x (k+1,x) Flk,U(ky,k-1)) :-C(x,x)
(2.4.20)
< E{L(k,x,u)+C{k#L,x (k¥1,%) ;?(a,u(ko,k—l))—c&,g a.s.
k=kg, kg +1, ..
where for x = kG, ko +1, ..., N-1
* *
x (k + 1,x} = A(k)x + B(k)s (k,x) + £(k) (2.4.21)

x (k+1,%) =Ak)x +BEu+5(k) ;5 uvw=z2(k,g)es

*
i.e., u is any perniscible control value at k. Then the contrel iaw & (-,*)
is optimzl and C(ko,i(kc)) is the optimal cost a.s.
*
Proof: tiet x (k),k = kO,...,H be the random vectors which satisfy the dif-

ference equatiecn (a.s.)

* * * *
x(k+1) = A(KX () + B2 (k,x (k) + £(K)

(2.4.23)

*
x (k) = x(ky)

By using lemma 2.2.6, we have from (2.4.20) that: (a.s.)

Clkgox(ks)) = E{L(ky,x(k,) ,3*(k0 2 (k))+C (kg tl X (k) |F(g(k)))

= EfL(kg,x (ko)) (ky,x (ko)) [Flg(kg))}
c * * ®
+E{E'.L(k0+l,_§ (kgt1))e (ko*l,x (ky+1))

; HC(kgH2,5 (et 2)) [ FlkgHL,g (k8 (e P (g (k) )

kot

" E Y Llox (K),8 (k,x (0)|Flg(ky)

] k=k0 .

{ +E{C(k*2,x (k0+2))|F(g(k0))} . (2.4.24)

[t}

faati =iy
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inductively and Ye2ping (2.4.19) ia miad, we have

%1
* x * * _
Cligx(xg)) = EfK(x ())+) Llox (3,2 fk.x (TGN} a.s. (2.£.25)
k=k0
. - 'O I -x"l - -n - = 29 3 -
Now jet b = u (1):i=9 te .ay adoissidle control iaw of the form {2.4.17).
Let x"(k), k = kg» ¥y + 1, ..., X b2 the randes vectors which satisfy (a.s.)

X+ 1) = a0 ) + BT + L) ; L) = xky) - (2.5.26)

By (2.4.17), u°(k) is F(:,U%(ky,k - 1))-measuradle. Using lemma 2.2.6 and

the irequalicy of (2.4.20), we have (a.s.),

Clkgx (i )) < E{L(ky,xlk,),u° ()+CLk +1,x° (kg +1)) T (g (k)

0
< E{L{k,x(k )),u’ (k) | F(g(k.)) HELEIL (k. +1,x0 (k #1),00(k 1))
LS 0)__ o 2 U 3. o 4 Ao, 0 p iy 0 = 0
ke #2,x° (k¥ 2)) FFli 1, u” (e ) }iF(g (k3D 3
kgl
= Ef Z L0, () ,0° (k) [F (g (e DI} HE(C (e 92,27 (5 #2)) [ F (kD)3
Kk, (2.4.27)
Inductively and using (2.4.19), we have
N-1
Clkgx(k)) < E{R(x° @) + jz L(k,g?(k),g?(k))%F(g(ko))} a.s. (2.4.28)
k=k,

Combining (2.4.25) and (2.4.28) we have the assertion of the theorem.

Continuous Time Stochastic Conirol Froblem:

A continuous time process is described by

2(8) = £(t,x(63) + B()u(r) + £(t) (2.4.29)
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where x{z; - 39,11(:. ) satisfies the Lipschitz condition (2.3.18}.
3{zg) - Glxy.zg) 2nd 2(3), T = [CO,TJ is white Gaussian ncise with statis-
tical law (2.3.9) and (2.3.10). Denote the control E[to,t) = <u(?),

T {:D,c)}. let g(t,U{to,:)) te an observation statistic such that if

1e,-

L[r. ) = :-‘(g(tot{:o,cl)) C F(g(:z,t'[:o,tz)) ?(tzl'[to,tz));

0D
at t = g, g(to,L[to,to)) = g(to) a2ad is independent of control. Let

. -z =15 % < e TSF e (2 4 ) . 1'{e
‘Evlto,z}(t)’ L < [co,xl. be rhe process described by (2.4.29) when VI-O,T)

is zspplied. We assu=e that 5%[ )‘c) is F(¢ L[; ,£))-=easurable when the

control is restricted to be of zhe form
u(e) = 3}t,g(:.ﬂ[:o,t))) £ S (a.s.) . (2.4.306)

The coatrol problen ic zo find optimal control law of the form (2.4.30)

such that the cost

T
BE,x(e) () iFee ) | (2.4.50)

0

3(ieg, D iFGR(cy)) = E{K(i(f) * ;E

is minimized subject to (2.4.29).

Fer a fixed control UOItD,T) of the form (2.4.30), we have a fixed

diffusion process described by
x(t) = £(r,x(r)) + B(e)u’ () + £(¢) (2.4.32)

. . o - . . X
and we can associate with U [to,ll a fixed differential generator £ o(-).

u
Let C(t,x) be a scalar function, we have
£ (ctex) = 3 e 2o (60RY 201 (EE,p o8 () (2.4.33)

u
€ (£,%)
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Theoren 2.5.2: (Ootinmality Criteria: Continuous Tize)

* n . *
Suppose there exisrts a centrol law 2 (-,°): [to.T) xR -~ S with ¢ (c,*)

. . n 1
satisiying the Lipschitz condition, and 2 function C(-,<): [tg,T) xR" - R

et S MRS A Ee S £ o )

such that

Laats)

(4

1)  C(t,x), Ct(t,g), gx(t,i), Qxx(t,z) are continuous and for

g . . ' 12! . 12 n
, C +.C .+ ixjlc i+ !xi%ic < kQ+ xi7) (e, 0elry, xR (2.4.34)
2)  ©(T,x) = K(x)  a.s. (2.4.35)

L
L
~
o

]

*
C (6,2) + El £a(C(e,2) + L(g,x,2 (t,)) [F(,[r,,t3)}

A

Ct(t,g) + E{.%§C(t,§) + L(t,gl_(t,gj)]F(t,U[tg,t))} a.s. (2.4.36)

for all (tx§)s[t0,T]an, and ¢{t,-) satisfies Lipschitz cendition.
Then gé(ttﬁ(t)) is the optimal control law and C(‘o=§(to)) is the optimal
cost a.s.
Proof: Let 5*(t) be the resulting diffusion process described by (2.4.32)
where #e adapt control law 3%(-,° . Using the Itd's integration formula

*
(2.3.31) applying te the process x (t}, we have

ELC(g,x (60 IF(g(£))) = Cleg,x" (£)) = EC(T,x (M) (g ()}
(T
e | ERCRRY O
t
0
+ CT(I,i*(T))]dTIF(g(tO))} a.s. (2.4.37)

! By lemma 2.2.6 and Equation (2.4.35), (2.4.36), we obtain
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C(t

* .. % . L . N
0% (£g)) = ELEC(T,x (1)) Fx (1)) . F(glry)):

+ *
o £°~;(C{-,5 ()))

%o

€ (5,5 ()14 F(t,lleg,0))  Flaley))
% T % * *
= ER(x (M) +  Lis,x (9),z (i.x (30)dx'Flg(ey))
i o
0

2.s. 2.4.38)

Let :(t,+} be any control law which satisfies the Lipschitz condition, and

o . . cem s . .
x {r) be the resulting diffusion process described by (2.5.32) when control

(o]

law : ' (t,+) is used. The Ité's integration formula, applied now to the

o .
process x (t), gives us

T

ELC(T,x" (1)) 'Flaleg)): - EY' 1£5(C(,x° (1))
‘C
0

+C(5,x° NI Fe e }

C(:O,f(to))

-T
RGO + 1 LG (22 (5Lx ()i F@(e ) | aus.

"t

1A

(2.4.39)
where the last inequality comes from the inequality part of (2.4.36), also
lemma 2.2.6 is being used in deriving (2.4.39). YNote that C{+,+) is de-
fined on [tO,T)an; now equations (2.4.38) and (2.4.39) vield the statement
of the theorem.

2.5 Generalized Matrix Riccati Difference Equations

. . é it } =
For a given sequence of matrices V £ {!(k)}k=ko, V(k) € 1nm’ k ko,
ko +1, ..., let {gv(k,ko;g)}:=k be the sequence which satisfies the linear

0
matrix difference equation:
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B (k#1,ko3F) = (A=Y (OD()AR)E (k,ky3E) (AGK)-V()D(R)A(K)) '
+(L_-¥(x)D(k))Q, (k) {1 ~¥{1)D(K))'4Q, (k)-Q, (k)+V (K)R(K)Y' (k)

B, (kgokg:E) = E (2.5.1)

where A(k) < “nm’ b(k) ¢ '\[mn are bcunded uniformly for all k. We assume

&

that F, Ql(k), 9,(k) are symmetric nonnegative definite nxn matrices with

Ql(k) Q,)(l\), 0, ko + 1, ..., and that R(k) is symmetric nonnegative

definite mxm matrix. Since (2.5.1) is linear, therefore for auny artitrary
o<

7 e M c = I - 1 M c . » i 3 3

V(k) ¢ Ir , k ko, ko +1, ..., *P (k,ko,_I_-‘_),k___kO exists, is unique and

-~ = 1. 3
('(,‘\0, ) - 0, Lso, I\O T 1, re e o

When V(k) ranges over }-!_m, k = ho, k., +1, ..., we generate a solution

142
¢ + 1, ...}, All elements
ko o> %o ’ '
in the solution set Bk is a sequence of symmetric nonnegative definite
0

set R (P (k, k I-‘)) =k v(k) = Hnm’ k =k
0

nxn matrices.

Definition 2.5.1: (Minimal seq.cicej Let 8 = TS M) = M,
'0 - k=k0 - an
‘P 0 \ :
0’ ko + 1, ...}; an element (! (k))k kg Sko is called a
minimal sequence with respect to 8 if for all (Qi(k))” e 8, , we have
ko = k=k0 ko

M) = MK), k= k., k. + 1,

0’ 0
For a given set ﬁk , @ rinimal sequeuce may not exist; but if it
0
exists, it must be unique. In the following, it will be shown that the

solution set Rk has a unique minimal sequence.

0

Let us define the matrix ik(_\_’_,f_) by (k = ko, ko + 1, ...)

5 W,P) = (AK)-V D(k)A(K)IP(AK)-Y D(K)A(K))’ +(L -V D(x)Q () (L ~¥ D(k))'

+Q, (k)-Q; ()+¥ R(K)Y (2.5.2)
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where V o ¥, P oL F . ived P - M, define the set
- nm - nn - nn
v = V¢ M (%) is sc..sfied: where the condition (¥), is given by
"I»;(P) Yo« - ( )k s sco:.sfied: where the condition ( )k is given b
(%) T1R()DIK) (Q, (K)+AMKE A" (k)D' (k) - = A(OP A7T(R) -4 (1) IR (%)
We have the following lemma:
Lemma 2.5.2: (Minimum property) Let P ¢ ‘\inn’ and P = Q; if V VU k(_f_’_),
then for all V= ¥ :
- nm
£, (4,2 2 5 (9,R) ;o k= kg kg+ 1, L. . (2.5.
Proof: Let us denote
E_(k,é’_ = R(k) + D(k) (_Ql(k) + A(K)P2 A'(k))D' (k)
(2.5.
k=kg kg + 1, ...

The conditior (*)k can now be wr.tten as

SN T RE,E) = QUOP AT - Q(K) D'(K)

k=k0, k0+1,

Let ¥ al:k(g), \ must satisfy (*)l'c; and so for V ¢ Mo Ve have

2, @P+HE-DR(K,2) (¥-1)

= AGOP &' (049 ()= DOO[A(R A" ()40, (0)J-[AGOR A" (K)+Q, () 1D’ ()Y’ (k)

¥ R{k,B)T+Q, (K)=Q, (K)4Y R(K,PIY'~¥ R(K,PIY'-V R(K,D)Y'

= A00R A" (K)4Q; (0)+Q, (k)-V R(k,P)¥ = (AGDR(K)A" (K)+Q; (k))D' (k) V'

-V D(k) (Q, (k)+a(k)E A'(k)) = %(x,g) k=kys kgt 1, oo

(2.5.6)
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Since R(k,P) - 0, (2.5.4) follows from (2.5.6).

An immediate consequence of the lemma is that

"'k( l’P) = (!_2,_?_) ’ !]. )!2 € L’k(g) . (2.5.7)
Theorem 2.5.3: There exists a unique minimal sequence, {P (k, kO,F, k K
0
with respect to the solution set Rk .
0
Proof: Let us constouct the sequence P (k, kO,F);k -k 23S follows: Set
0
= i) € ). S ! )
P (ko o’E F) = F, and choose ! (LO) Lko(g) Such a i (ko, may not be
unique, but by (2.5.7) and (2.5.1), this gives rise to a unique
POk, + 1,k ;F) = N (\’o(k )L.E), vo(k) £ b (F).
= Yo 0 .O - == ko —~
Assume that V k), k 07 “0 + 1, ..., ko + i, have been chosen induc-
tively with j?(k) 5 uk(g (k,ko;f) and a unique sequence
POkl ksE) = 2, (V0 (0),BO (x, ksD)) o ko= kokgtl, .. kot (2.5.8)

has been constructed. Cheose V (k + i+ 1) ¢ Uko+ +1(P (ko + i+ 1, k iE)).

By (2.5.7) and (2.5.1), this gives a unique

Q. .. . o,
P (k0+1+2 k ;F) = _i‘o+ +1‘\ (ko + 4+ 1), P (k +i+l ko ;E)) . (2.5.9)

The sequence \P (k, ko, ") :=k thus constructed is unique.

0
LS f ’ i i c M k =
Let V V(k): k ko be an arbitrary sequence with V(k) ¢ Mo K kO’
ko +1, ... . By lemma 2.5.2

v

[o]
P (kgtl,ksE) 2 PO(kgtl,ksE) . (2.5.10)

Assume that for i 2 1,

s o T 0, $ . . 1
Ev(k0+1,k0,£) 2y (k0+1,ko,£) . (2.5.1




From (2.5.1) and (2.5.2), - v a given YV - Hnw:

i B TP, 20, k=kpkgtl.o . (2.5.12

x5 LR 2 2 (VLE)
Coembining (2.5.1), (2.5.2), (2.5.5), (2.5.11), and (2.5.12), we have

f (e 43 k =3 % F3) - - Tk A1 Do-'--
(\ (l\ -+ ) gv\k N )) - -{ +i(}_(z\o"-—) 25 (1\0'*-1:1\0’5))

P h +. l - = T - -y - .
2, (gt kg3 E) Tt N T
r @0k 1) ,B0 (k Lk GE)) = POk Lk GE) . (2.5.13)
Tegrits om0 WgTh iR T = MgTh s

The theorem follows from induction.

Definition 2.5.4: The set of eaquations

Rt ksE) = (L -V(R)D(K)) (AGRIB (kK sEIA (K)4Q (K)) (1 -V (2D (K))’

0, (K)-Q, (RHLIORMY' (k) 5 Rlkg,kgsE) = E
(2.5.14)

¥ RE)R(O AUOR (k,k SEIA' ()40, (K))D' (K))

= AP,k PA(K) + @ (K) D'(K)

is called the generalized Matrix Riccati Difference equation, and the

unique solution is called the Riccati sequence, which is also the minimal

ik £ Utk e it by

sequence with respect to ﬁk .
0

The above definition is meaningful because of theorem 2.5.3. 1In the

special case when R(k) or Q(k)gl(k)g'(k) (or both) is positive definite,

then (2.5.14) can be written as a single nonlinear difference equation:

IR

Y
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BHL3E) = AGR (K Kk 3DIA ()4Q, ()= [AGOR (ko3 DA ()+4Q) () ]D' (k) -

{RO)+D(K) (AGOR (K, kDA’ (k49 (1)D' ()} D) [AMOR (K sDIA' ()42, ()]

E(RO’RO;E) =F . (2.5.15)

rr
Equation (2.5.15) is the Matrix Riccati Difference equation.[zsl"zgl

2.6 Generalized Matrix Riccati Differential Equations

Let V(t) be arbitrary bounded measurable nxm matrix defined on [tO,T].

Let F (t,t.;T) be nxn matrix defined on {t.,T] which satisfies
—v 0’— 0
P (t,t05E) = (A(£)-V(E)D, (eNE (£,05E)4R (£,t5E) (A(E)=Y(E)D (£))
f!(C)QKt)yf(t)+(;n<1(t)22(t)1§(t){Lnfg(c)ga(t))' ;
R (ty,60sE) =E 20 (2.6.1)

where A(t) is nxn, Ql(t), Qz(t) are mxn; R(t) is nonnegative definite nxn
matrix and Q(t) is mxm nonnegative definite matrix (all matrices are
a2ssumed bounded measurable). Since (2.6.1) is linear, the solution

_v(t,to;g), t ¢ [tO,T], exists and is unique for a fixed bounded measurable

P
v

(t) (nxm) defined on [tO,T].

alakoad

When V(t) ranges over the set of all bounded measurable mxm matrices

defined on [t,,T], it generates the solution set ﬁr = {P (t,t.;F),
0 t0 —v 0’—
t e [tO,T]IX(t) is bounded measurable nxm matrix defined on [tO,T]}.

Definition 2.6.1: (Minimal function) Let ﬁf {M(t), t ¢ [tO,Tllﬂ(t) 20,

0

t e [tO,T]}. An element g?(') € QI is called a minimal function with respect
T T °

to §, if for all M(+) ¢ §, , MO(t) < M(t), t ¢ [t.,T].
to - t)? - = 0

Let us define

A(t, V(1) =4A (t) -V(OD, (©) . (2.6.2)

o

v ™
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The solution of (2.6.1) is given by[34]
t
B (t,ey3E) = 25(e, ) 2(t,ty) + f (6, ) {V()QDV" (1) +
‘0
L - !(T)QZ(T)]'E(T) (Z,- X(T)Qz(r)]'}gi(t,r)dr . (2.6.3)

Since F, R(1), Q(1) are all noruegative definite matrices, we have
gv(t,to;gj 20 ; t e [to,T] . (2.6.4)
Define the matrix
$(e,0,R) 2 ACE, R + R AT (e, 1) + V Q)Y +
(L, = ¥ Dy(NE® @_ - ¥ D, (1)) (2.6.5)

vhere V is bounded nxm matrix, and P is bounded nxn matrix. For a fixed

Pe M ,» define the set ut(g) ={Ve Mnml(*)t is satisfied where (_*)t is
the condition
), V(Q(e) + Dy (R(EID) (1)) = B D (&) + R(£)D)(t)

Lemma 2.6,2: (Minimum Property) Let P ¢ M, and P20;if Ve ut(g),

then for all Ve M , we have
- nm

¥(t,V,P) 2 ¥(t,V,P) , te [t,,7] . (2.6.6)

Proof: Let V ¢ ut(g), by using (*)t we have
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206, 3,20+ (V-Y) (D, (£)R(E)D) (£)4Q(e)) (V=) *

<t

= AG)P-T D) ()P4R A' (6)-2 D} ()T'+R(6)-T. B, (£IR(£)-R D) (£)F"

+2§(22(t)_15(t)_lzé(t)+g(t))ﬁ‘+_\1(22(c)g(t)gé(t)+g(t))1'-_‘1(22(t)g(t)zé(t)
#Q(e))¥'-V (D, (£)R(£)Dy (£)+Q())V"

= AGE)P-Y D) (£)B+R A" ()P D) (£)V'+R (€)=Y D, (£)R(t)-R Dj(£)V’
+1(22(t)5(t)gé(t)+9_(t))z' = ¥(t,V,P) t e [tO,T} . (2.6.7)

Since R(t) 2 0, Q(t) 2 0, (2.6.7) implies (2.6.6) immediately. From the

lemma, we have

_‘:‘_(tay_la_g) = E(C,XZ,E) if _lez € Ut(_li) . (2~6°8)

. . : . 0
Theorem 2.6.3: There exists a unique minimal function P (t,to;g),

t e [tO,T], with respect to the solution set ﬁT
0
. ( . © .
Proof: Let us construct a sequence {gk,t,to,ﬁ)}k=l as follows Set

gl(t,to;ﬁ) = 0, choose bounded measurable Xl(t) £ Ut(gl(t,to;g) t e [tO,T].

Denote gz(t,to;g) = gvl(t,to;g). Having chosen bounded measurable

_\Li(t) £ ut(gi(t,to;g)), t ¢ [tO,T], for i =1, ..., k, let gkﬂ(t,to;_li) =
gvk(t,to;ﬁ), t ¢ [tO,T]. Using lemma 2.6.3, for k > 1:
d(p (t,t ;E)-P (e, 3F))
=k s A ,
ic =¥,y 3 (6)s B (e, tsE))-2 (e, (t)’—k+l( tysE))

Iv

E(ta!k(t),ﬁk“ t 3E))-¥(e,V (t),_kﬂ( 0;2))

Ao, Yy (0 @y (6,605 E)-R, o (e, 5P))+

( o1y S A A r 1
(B (€583 10-P 0 (6, sEDACE,Y, () L (2.6.9)
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]

< L AN SO i ies t > 1:
Since Pk(to,tO,F) (ro, 9) implies that for kL 1

lik(r.,to;f_) 2 -0 t ¢ [to,'r] . {(2.6.10)

P, ..
~k+"

~
Therefore, there exists P (&, sF) such that

0)

lim P, (t,t ;F) = P (c, ty 3] . {(2.6.11)
,.‘k O b
k=
Ler us define, for k > 1, the matrix gé(t,to;jj which satrisfies
(e 0500 = (e,¥,_  (©),B, (5ot )Pt e GE) = F . (2.6.12)
i > 0,~ (ALY ""k"‘l b 0’_ ' s 07-0)_ = b
1.
Clearly, -“(t,co;’s‘) =0, t: (£ T], a

d(i‘ e stgsE) - P, (t,t53E))

= 'i(t’s'l-_l(t) (gk..l(t:to;li) - (t to, Y)
+ (B, (t,505E) - B, (£52, EDA" (e, (€))
(2.6.13)

Since A(L, (t)) is bounded measurable in [tO,T], taking limits on both

sides of (2.6.13) and using (2.6.11), (2.6 6.12) we have

i(t,}lo(t),_iic(t,to;f_)) = lim f’ (t, to, ) = lim _fik(t,to;g) P (t,t

k-n‘v k-r(x)

0"
(2.6.14)

. 0 v (02 .

where V (t) ¢ Ut(' (t,to,F), t ¢ [CO,T].

\(x, 3
Note that the choice of the sequence fyi(t)!i=l is nonunique and so

the sequence ‘P t, O’F)}:=l thus constructed is nonunique. Let {ii(t)‘:=l

be another chosen sequence wherz for i 2 1, Yl(t) €V, (P (t, tO,F)) and

gl(t,to;_{) =0, gi+_1(t t3E) = _‘7 (t ’tO;D’ Let

lim P, (t,t
fom K

E) = _f:o(t,t

o} F) . (2.6.15)

05
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- ces
Then P (t,co;fj also satisfies

Ble,egsP) = 26,3°0,8(c,esD) 5 Bo(ey,tsE) = F (2.6.16)

0 0°to’
where g?(t) € Ut(io(t,coig)), t e [tO,T]v Using lemma 2.6.2, we have

é"(t,to;i) - _f1°(t,t0;£) = g(c,§°(c),§_°(t,co;§)) - 9(t,v°%(v) ,_i:°(t,c0;£))

v

206,37(0), 20, £ 5E) = 2(e,3°(6) .22 (%, 05 E))

AY2 (@) B (e, 03B - BO(t, e iE)) +
(B (t,e05E) - PCe, e sENA'(6,¥0()) . (2.6.17)

We conclude that g?(t,t 3F) 2 g?(t,to;f), t e [cO,T]. We can interchange

Y

between g?(t,to;g) and ?o(t,tozﬁ) in (2.6.17) to obtain E?(t,toig) by g?(t,to;gj.
Therefo}e we have the uniqueaess of the function E?(t,togz).

Let V(t) be an arbitrary bounded measurable nxm matrix. We have as

before:

o
i
~~
[ni
-
[md
o
I
e
I

= :?_(c,z(t),gv(t,to;z)) - g(t,1°(t),_i’_°(t,tc;£))

Iv

HINIOBNCRINDIENTCRTON A CH )

W

A6,V @ (6,e058) - PO(t,t55)
. - p® . Al 7 .
+ (8 (e,t550) - P (t,e3E))A" (£,¥(t)) (2.6.17)

and so gv(t,to;g) 2 gé(t,to;g), t € [tO,T]. This completes the proof of
the theorem. Note that the proof alsc gives an explicit algorithm to find

o -
P (t,tO,L).
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Pefinition 2.6.4: The set . -

E(t,ta;g) = Ae)-¥(e)p, (&) oo ;z_)+2(t,t0;£)(;\;(t)—x(t)gl(t))‘

(OO ()+2 -¥(0D, (DRI -V(0)D, (€)' 3 P(eg,e5E) = F

,\L(t)(g(t)+22(t)§(t)gé(t)) = g(c,co;g)_gi(c)+5(:);gé(t) (2.6.18)

is called the generalized Matrix Riccati Differential Equation. The unigue
solution g(c,co;g), £t g [tO,T], is called the Riccati function, which is

< - . . . T
alsc the minimal function with respect to the solution set Rt .
0

If 2(c) = Q(¢) + D, (e)R(t)D)(T) > O, then (2.6.18) reduces to a

single noalinear matrix differentizl equation:

’ -1 .
Blr,cgsE) = (A(D)-R(2)D)(e)2 “(e3D, (2))B{t,c, ;4

<o

"R (0D, ()"
'E(C’CD;E)Ql(t)éfl(t)gi(t)g(t’teiz)fg(t)Tg(t)QQ(t)gfl(c)gé(c)g(c)

g(to,to;g) = F . (2.6.19)

Equation (2.6.19) is the Riccati Differential Equation.{3l]’[32]

In the general case, for a fixed beunded measurable V(t), t ¢ [t0,1 :

——

o > . 3 e 2
B (E,egsE) 2 B (6,65E,)  if E ¢F ) (2.6.20)

Let !1(t) £ Ut(g(t,to;il)), t e [tO,T], where g(c,co;gl) is the Riccati

function satisfying (2.6.18). By theorem 2.6.3, we have for £1 z 22:

. < . < . = .
g(t,to,zz) < gvl(t,to,zz) < zvl(t,to,;l) g(t,co,f_l)

3 te [tO,T] . (2.6.21)
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2.7 Perspective

4easure tacoretic approacaes to probability theory can be found in Loeve
2], Doob [1]. The notion of statistics as used here was introduced by
Halmas ané Savage [13]. The term observation statistic is used so as to
conform with physical interpretation. Conditional expectation and condi-
tional distribution of a2 random variable (or vector) are treated in detail
by Doob [lj. Conditional independence of sub-g-algebra was treated by
Meyer [14]. This is a more general and more intuitive definition of inde-
pendence. Gaussian random vectors and Gaussian random processes are treated
by Doob {1], Loeve [2], Cramer [15], Davenport and Root {3]. Gaussian white
noise process viewed as the formal derivative of a Weiner process is
treated by Wonham [4], McKean [16], Ité [17]; Gaussian white noise process
viewed as a generalized process can be found in Tse [5], Gel'fand and
Viienkin {18}.

Linear transformation of a Gaussian Vector is treated by Davenport and
Root [3], Cramer [15], Doob [l]. Stochastic differential equations are
studied by Ité [17], Stratonovich [1S], Wong and Zakai [20], Tse [5], Clark
[21}. Different interpretations to the stochastic differential eguations
are possible, some are in accordance with physical interpretation [19],

(21} while some in terms of mathematical rigor.[17] in the linear case,

all different interpretations are equivalent. The treatment used in

Section 3 is consistent with all interpretations. The diffusion process is
treated following Wonham {22] using Ité's interpretation, for a detailed
discussion vn the differential operator of a diffusion process, see Dynkin
[7]. The proof of Ité's integration formula ic given by Ité [17]), Skorokhod

[8], Wonham [4]}.




Matrix Riccati Differern.c equarions are not treated in detail in tue

existing literature. Deyst and Price [28], Sorznson [29] and Aoki [30]}

considered the matrix Riccati difference equation which appears in filtering

e s S

problems. Their considarations are restricted to a special, yet a large

class of problems. The treatment given here is m , and the intrinsic

properties of the matrix Ricecatri difference equatioi are vevealed. The

definition of generalized matrix Riccati difference equations and Riccati
sequences are due to the author.In the contiauous case, Kleinman [31],

Wonham {32] had made detailed instigations. The approach used here is due

u b

to Wonham [32]. The gereralization given in Sectiom 6 is new, and the
definition of generalized matrrix Riccati differential equations and Riccati
functions are due to the author. The motivation for this generalizatiom is
to bring out the most intrinsic properties of the equaticn and its solution.

As we shall see in later chapters, this generalization allows us to under-

stand the structural behavior of estimators and closed loop control systems.

s I e s
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CHAPTER 111

OBSERVER THEORY FOR DISCRETE-TIME LINEAR SYSTEMS

3.1 Introduction

The problem of estimating the state variables of a dynamical systenm
given observacions of the output variables is of fundamental importance
in ihe design of an optimal control system. If une considers the class of
linear systems, then there are two approaches available in the literature.
If the outputr variables can be measured exactly,and if there are no other
stochastic disturbances acting on the system, then one can use a determin-
istic observer (see references [35], {36]). On the other hand, if all the
output variables are corrupted by additive white noise, then one can use a
Kalman filter {s<e references [39], [40], [37], f10]) for state estimation.

There are many cases in winich some cf the output variables are ncise-
free while others are noisy. One can argue that no measurement is exactly
noise-free. On the other hand, :here are many engineering systems in which
the accuracy of measuring one variable is much greater than the accuracy
of measuring some others. In such problems the measurement covariance
matrix is almost singular and it can lead to ill--conditioned matrices and
numerical problems. Thus, one can attempt to model the very accurate
measurements as being deterministic.

The main purpese of this chapter is to examine this class of problems.
In this contribuiion we examine the state estimation problem for linear
disc-ete-time time-varying dynamical systems. The continuous time case will

be considered in Chapter 1V.
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The structure of this chapter is as folicws. In Section 1.2, we focus
our attention to time-varying deterministic systems, we defire the notion
of a deterministic cbserver and estimator, the class of equivalent observers,
and the class of minimal order observers. In Section 3.3, we extend the
deterministic notion to the class of stochastic systems where we show that
the class of equivalent observers yield unbiascd estimares. Then we determine
the class of observers that yield minimum variance estimates by formulating
the problem as finding the minimal sequence of a certain solution set and
then make use of theorem 2.5.3; we then prove thar these observers yield

indeed the conditional mean estimates of the state. NRNaturally,

£ +ho Abcar-
< cal gleerx

vy

vation covariance matrix is positive definite one obtains the well-known
Kalnan filter. 1In Section 3.4, we examine in detail the case that some
measurements are noisy while others are noise free. Under these conditions
we show that the order of the minimal order observer is less than that of

the state to be estimatecd. In Section 3.5, the notion of derectabilitv is

defined and the relation between detectability and observability of dis-
crete linear system is considered; also in this section, we generalize the
resules of Kalman [41] on deadbear deterministic observers to the time
varying case. Using the concept of detectability, we derive necessary and
sufficient condition for the minimum error covariance to be uniformly
bounded and to have a steady state behavier. This is carried out in Section
3.6. In Section 3.7, we have general discussions on the approaches and re-
sults. 1In Section 3.8, detailed literature connected with the development

in this chapter is listed.
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3.2 C(Classes of Observers for Deterministic Systems

In this section we shall consider a linear time-varying discrete system

81 described by

(state eq.) x(k + 1) = A(k)x(k) + B(k)u(k)

(output eq.) y(k) = C(k)x(k)

where k = 0, 1, 2, ..., x(k) € Rn, u(k) e Rr,‘x(k) € Rm, and C(k) is of rank m.

Let an be the set of all mxn matrices with real entries. If m £ n, the

, - 3 v n
null space of a2 matrixz M ¢ M will be denoted by N(M) = {x € R; Mx

Definition 3.2.1: Let C(k) ¢ an be of rank m; the set

2C(k)sm,s,0) = {I(K) € M_:N(Z()INN(EK)) = 0 ¢ R’}

is called the set of complimentary matrices of order s for C(k) if s 2 n - m.

We note that T(k) e 2(C(k);m,s,n) if and only if there exist P(k),

V(k) of appropriate dimensions such that

POOIG) +VGOCE) =1 (T e ) . (3.2.1)

Definition 3.2.2: A discrete lipear time varying system of dimension

s 2 n - m described by the relation

o 2(k + 1) = FQ)z(k) + DRy (k) + Gkdu(k) (3.2.2)

is called an s-order observer for the system 8] if by some appropriate

choice of z(0), we have

z(k) = T()x{(k) ; forallk=0, 1, ... (3.2.3)

for some T(k) ¢ Q(C(k);m,s,n), k

0, 1, 2, ... . Ve shall aiso say that

|
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the observer is described b- (.2, .a. refer to such an observer by the

symbol @;.
1f GT is an s-crder obscrver for Sl, than by an appropriate choice of

z(0), we can reconstruct x(kj by
wlk) = P{)z(k) + V(K)y(k) = PAITMR)x(k) + YRICKIx(k) = x(k)  (3.2.4)

where P(k), V(k) are chosen to satisfy (3.2.1).
In the following theorem, we prove that a class of observers can be

constructed for any linear discrete i =me varving system.

-

Theorem 3.2.3: Let T = :Z(k)}k=o

be zny sequence of matrices in Mns such

1
that T(k) ¢ i(C(k);m,s,n). The:, there exists an s-order observer, G, for

(<}

L‘Il-
. . . . . . 1.
Proof: The proof is a constructive one in which an exolicit form of GT is

obtained. Let T(k) ¢ 2(C(k);m,s,n), k =0, 1, ..., be given. Pick

F(k) = T(k + 1AKIR(k) (3.2.5)
D(k) = T(k + 1)A(k)IV(K) (3.2.6)
G(k) = T(k + 1)B(k) (3.2.7)

where P(k), V(k) satisfy (3.2.1), k =0, 1, 2, ... . Then
z(k + 1) - T(k + D)x(k + 1) = T(k + DAKIL(k) (z(k) - T(k)x(k)) . (3.2.8)

Therefore, if we choose z(0) = T(0)x(0), we obtain

z(k) = T()x(k) 3 k=0,1,2, o. . (3.2.9)




-47-

The observer described by the given sequence T has the explicit form:

Gpz(ke]) = TOHDAMRPRZ(K) + TUHDARY Ry + I(+DRMuk)

(3.2.10)

A 3 ’n ™ 1LY m! FNIRR

. . 1 . .
To an observer G%, we associate an estimator GT described by (see Figure

NPy

3.1)

o ¥ Yy

z(k¥1) = T(k+DAKIP(K)z(k) + T(k+1)AK)V(k)y(k) + T(k+1)B(k)u(k)
‘"'%‘ (3.2.11)
w(k) = P(k)z(k) + V(k)y(k)

é where P(k), V(k) satisfy (3.2.1) for the fixed T(k), k =0, i, ... . By
setting 2(0) = T(0}x(0), w(k) will equal x(k) by (3.2.4). But in most
cases, the initial state x(0) is unknown. We shall fix the initial condi-

tion for the observer G% by the rel:r ion

: 2(0) = 1(0)a (3.2.12)
; n
where the vector a is a guess for E(O). Thus o is any vector in R, and
4
3 the possible values of z(0) will be in the range space of T(0).
g Let v & {i(k)}:=0 be any sequence of matrices in Mnm' Let us associate
n with the given sequence a sequence of sets where
uf
- 1 - = .S—>- -
g!(k) = {E(k)ﬁl‘lsnlB(k)lr_(xt)-i-!(k)g(k) I for some g(k)al\lns, n-m} ,
' k=¢, 1,
5
j . If T= {I(k)}:=0 is a sequence of matrices in M_  such that
X 1(k) ¢ Jv(k)’ k=0,1, 2, ..., then we shall in short write T ¢ gv. Now
| let T e §,,; by theorem 3.2.3 we can associate O every such T with an
1‘ 4
%
S
grf

3 ey
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observer Q%, and an estimator 3%. Thus, we can associate with any fixed
V a class of observers of different orders.

Suppose that for a fixed V, the sequence of matrices {(Ln - V(k)C(k))},
k=0, 1,2, ..., has rank u - p; then the class I = {@%IT e 3, and

T(k) € Mn ) has full rank, k = 0, 1, ...} is called the class of minimal

(n-p

order observers associated with V.

Definition 3.2.4: Let L1 be a linear discrete system described by

%, (k + 1) = F, (K)x, (k) + G, (k)u(k)
L (3.2.13)
¥, (&) = ¢, (k)x, (k) + D, (k)u(k)

described by

withlgl(O) e X, CR". We shail say that L,

1

X,k + 1) = Ez(k)ggz(k) + _G_z(k)g(k)
L2: (3.2.14)
¥, (k) = C,(k)x,{k) + D, (k)u(k)

. S : . . ce £
with x,(0) € k2~‘ R, is an equivalent representation of L1 if for any

B. € Xl, there exists a gzs X2 such that

= (u(ink
b, (38w ) = 6,(k8,,u, ) Yy = {u(i¥} (3.2.15)

where gi(kiéi,u() is the output of the system Li for_gi(O) = gi and applied

control u, .
-k

Equivalent representations may not be symmetric, i.e., if L2 is an

this does not imply that L. is an equivalent

1,
9" I1f Ll and L2 are both equivalent representations of
each other, then we say that Ll and L2 are equivalent.

equivalent representation of L 1

representation of L
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- - » - 1 =3 nl 2 nl
we Shallosav thar owe .-, O‘;‘_,, are eguivalent 112 amd T,
i S
P T u T gmn !‘l > i . ¥v: - o5
aze egulvalent. Lot T b o - -order STserver; by seme lizear tronsisrmo-

- SN = - ~ PRI e - -
TR0 O Lo SUEfte, We IO el oih fe 1738 We O

Coserver state, then for any s-order cosarver, S.i., we car find zn s’-order
chsarvar, C- whnich is an zacivalent represeatation of G, ths > s.
Theorer 3.2.3: Lex ¥V = -Y(x): L"O be a fixe2 sequaence of m=atrices ia }lm,

thke class of chservers G.:... T« T, are equivaleat.

- 1 =1 . = _ .
Proof: Ler € » &z be any o costimators, T, T € d‘,, describad by
a

2(5#1) = T(:+DAERE)IZ0) + IE=DAEYE () + TRH)BEuK)

a;: (3.2.16°
(k) = T(R)zdx) + YOOy  : z(0) £ 5 = iT(Max : R

2(:#1) = TEDAMKBRZM) + THDARTEy&K) + T+)BE)u(k)

ﬁ%; {3.2.17)
Br)Z(x) + V(K)V(K) "

et

2(0) = § = {I(Mai2 ¢ R

5
~~
Lol
s
i
{ree

e

I
®
rY
In
”~~
©
oo’
|

= 1(0)_;:_1 z S be the initizl cendition for G_]i'.. Choose

z(0) = i(())g_l ¢ S be the initial condition for G%,, then for 21l v(0):
w(0) = 2(0)_’1;(0)31 + V(0)y (0} = B(0 )_'I‘_(O)u + V(0)y(0) = %(0) . (3.2.18)
Assume that w(k ~ 1) = @(k - 1), then

PERITKIA(W(k - 1) + V(k)y(k) + P(k)T(k)B(k)u(k)

w(k)

BOOTAMRK - 1) + VK)y () + BT K)B (k)

k) .




Frem (3.2.18) and (3.2.1%F we conclude that
w(k) = @(x) ferail ¥ . (3.2.20)

Ceaversely if 2(0) = T(0)z, ¢ §, pick 20C) = T(0)s, ¢ S, then we also have

- -2

- =~ - 1 21 ) .
that the cutput of 5.:‘, a2nd that of 8.;_ arz the sawe. Thes N -".f are eguiva-
i 1 -
lent, a=d GT, G, are equivalent.
-3
Thus, for o fixed sequznce V, we cam asscciate with 2 class of eguiva-

-

. 1 -
lent odservers GT’ T= v Kaen V ranges over 2il possible secuercis, we
chiain differenr classes of observers paraxeterized by the segquence ¥. Im

. 1 cqs
a vagee sense, tha class of observers G‘T, T €9, utilize the sa=s a-ount

v
of incoxiny infor—ation provided by the observarions w(k), k=0, 1, ... .
The notion of efficiency of a system, 2s regard to the processing of in-
coning information, is(dn a ivose sense)a ratio between information utilized
and the cooplexity of the system. Thus for a fixed V, the post efficient
system associated with it is the class of minimal order abservers, =3. In
view of the above discussion, the design ot appropriate observer for esti-
mation and control purposes can be split into two distiuct steps: 1) to

- . - - * - - - - U
finc the appropriate V which specifies the operating performance of tne

class of observers, 2) to find an observer in the class of minimal osrder

Py,
v

3.3 Optimum Classes of Observers for Linear Stochastic Systems

observers, #

Let us consider the stochastic system 32 described by

x(k + 1) = A(k)x(k) + B(K)u(ky + E(k)
8. : (3.3.1)
y(k) = c(k)x(k) + n(k)




vhere x(0). (97, -(G), (. -9, .. dre independent Szussian raadss

vectors wizh sratistical law.

20 ~gx . 3 P (3.3.2}
iR) G, RK) ;3 RXZQ (3.3.3)
(&) ~G (0, g7) ;5 Q&x)zo0 . (3.3.%)

—

The ccatrol ui{k), k =3, ¥, ..., is ar arbitrary but kaown sequence.
» x - - - - -
leg V = gg(k)fk_o te an arbitrary sequence of matrices in Hh:' If we
o 1 - .
us2 an estimater 8,3., T ¢ o\" for 8,, to generate an estimate of x(k), ther

the error e(k) £ w(k) - x{k), can be computed from (2.2.11) and (3.3.1).

By picking z(0) = _'1;(0)5_0 , the error dynanics are given by

e(k¥1) = [L -V(c+1)C(k+1) JA(K)e (R)+V (kL) n (et )+(Y (kD (kH1)-1 )E (K)
(3.3.5)
e(0 = [L-¥(0)¢ )] [2_40-5(0) 1+¥(0)n (0}

. s < . 1 .
So explicitly (3.3.5) reveals that all estimators ST’ T ¢ 3'v, give the same
error dynamics ,which in some sense reflect the state of uncertainty of the

system 82. From (3.3.5) we see that

Ele(k)] =0 ; k=0,1,2, ... . (3.3.6)

Thereforerassociated with an arbitrary V, we have a class of equivalent
observers whose associated estimators yield unbiased estimates. Our aim
now is to find the optimum V* which will result in minimum error covariance.
From (3.3.2) to (3.3.6) we see that the error covariance will propagate

according to the matrix difference equation:
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Zs1) = {E -¥01)C0R) HAGE (A" (R)#R{) L -V{+1)C (k1))
SEEQGRF)Y (k) ; & =6, %, ...
2(0) = {L-¥(0)C(0) ]2 (L -¥¥0)C{0)] =¥ (0Q(9)¥" (0
wheare
£(k) = E{e(k)e'(k}} ; k=0,1, ... .
Defining

2(-1) =

e

AGD) = L

equation (3.3.7) can be wrifrzen

EGH) = [I-Y0rDC0HD [AKRIZRIA' (4RO -V (k+1)C (k1) ]

FY(RHD)QRHLIY' (kF1) 5 k= -1, 0, 1, ...

£(-1)

z
‘s

(3.3.79)

{3.3.8)

(3.3.9)

(3.3.10)

When V ranges over all possible nxm matrices, we generate a solutiol
H b )

set #_; of (3.3.10). ‘For the optimum estimation, we would like to find a

%
sequence V vwhich will give rise to the minimal sequence with respect to

the solution set 8_,. Ly comparing (3.3.10) with (2.5.1), we have the

1
following:

«©

*
Theorem 3.3.1: A unique minimal sequence {I (k)}

k=0

solution set B«l of (3.3.9) exists and is given by

Tk F 1) =8 - Uk + DCk F 1ATK) 3 k=0, 1, ..
250 = 1 - ZCHOEOEL (0) + a0 ez,

with respect to the

(3.3.11)




T TN

where .
* . * . .
L (k) = AK)E (R).v) — RawD : k=0, 1, -.. {3.3.12)
~ = . T .* ;* LAY
and ¥ () £ b (2 &1 = oF 2 X VEG)D (-DC(RRE)] = 2 (R-1C" (),
k=131,2, ... .

If 2ither O(k) > 0, k =0, 1, ..., or C(:FDR(KIC" (k+1) ~ O,

k=6,1, ... (or both), then the uricue Riccari sequence is given by

% % S * -3 &
IREL) = 2 (R)-2 (R)CT (kL) [C(k¥1)Z (RIS (k#1)5Q(k+2) ) TCT(xFL)L (KD
(3.3.13)
E oo Y- et (s -1y~ ) -
2{0) = £ -2 C"(0){L{O)Z C'(0)+Q(O)] "clO) 5 k=0, 1, ...

* * "
where I (k) is giver by (3.3.12), and the unique :E_(k);kzo which gives

rise to the Riccati minimal sequence is given by
% * % -
¥ (k) =4 (k~1Dc'&ICKEL (k - 1)C"(k) + Q(k)] 1 ;s k=0,1, ... . (3.3.14)

The proof of this theorem follows from theorem 2.5.3 directly by

identifying

Ckk +1) - D) , R(k}) — Ql(k) gz(k) (3.3.15)

Lk - gv(k,—l;go) s Q) — R(k) . (3.3.16)

Theorem 3.3.1 implies that an optimum class of observers is specified by

any sequence {g%(k)}:=o whera ?*(k) € Bk_l(gf(k - 1)) inductively,

k=0,1, ... with E%(k) given by (3.3.11), and (3.3.12), k=-1, 0, 1, ...

In the special case when Q(k) > 0, or C(k + 1)R(k)C'(k + 1) >0, k=0, 1, ...,
then there is a unique class of optimum observers specified by {yf(k)}:=0,

given by (3.3.11). In fact, one can show that an observer with an initial




condition z(0) = I{O}EO is in some senrse eauivaleant to the concept of un-
biased linear estimator (see Secrion 3.7), and thus an optimua class of
observers is also an optimun class of linear unbiased estimators. In the
rest of this section, we shall show that when u(k) is known, the estimator
2 ~ 7 . . . 2
generared via an observer GT, T ¢ :)‘-',*, and its associated estimator 81.
is the conditicnal mean of x(k). This reflects the truly optimua nature
of the optimum classes of obse:vers.

Since u{k), k=0, 1, ..., are known a priori, we may assume them 2

be zero without loosing generality. HNow consider 32 with contrel sequence
equal to zero. By the Gaussian assumption, the conditional expa:tation of

x(k), denoted by

#k]K) = Ex@]|F))} 3 F) £ F@E), i=0,1, ..., k) (3.3.1D)

. L]

equals almost surely to some linear functional of {y(0), ..., y(k)
Lemma 3.3.2: (Weiner~Hopf Equation) Let {gﬁk)}:=0 be a sequence of random
vectors such that w(k) is a linear functional of y(0), ..., y(k). If in

addition, w(k) satisfies for k = 0, 1, ...
Efw(k)y'{i)] = E{x(k)y' ()] i=0,1, ..., k (3.3.18)

then w(k) = x(k|k) a.s. for all k.
The proof is given in the Appendix B. An immediate consequence of this

lemma is the Projection Theorem.

T . . . s
The superscript is used to indicate that the stochastic system 32 is being
considered.




——— g

s pm——— o Jne b

56—

Theorem 3.3.3: (¥rojection = : v . o2 -g(k)?:=0 be a sequence of random
vectors such that w(k) is a ° - zr functional of {y{0): ..., y(k)}. Let
e®) & w() - x(x), k=0, 1. . . . :f e(k) satisfies, for all k,

Efe(®)y' ()] - ° ; i=0,1, ..., k (3.3.19)

then w(k) = ﬁ(k:k) almost surely for all k. [We shall refer to Equation
(3.3.19) as the Projection equation.]

For any fixed saquence V = {g(k)};zo; the output of the estimator
E}, T £ 3, at time k is clearly a linear functional of {y(0, ..., y(k)i.

In the folloaving, we shall prove that

Ea ()y' (1)} =0 3 1i=0,1, ...,k (3.3.20)

% 2
where & (k) the error of estimates if we adoprﬂqp T ¢ TQ*, as an estimating

%
device, and & (k) is given by (see 3.3.5)

D) = (1 - TRt (4008 () - £00] + F (kL))
(3.3.21)
% 3 ~%
g0 = 1z - OO, - x0) + ¥ (©0n(0

and V*(k) € Uk_l(gf(k - 1)) inductively, k =0, 1, ..., with gf(k) given by
(3.3.11), (3.3.12). Let us first establish a lemma and a corollary which
will be useful in later discussions.

Lerma 3.3.4: Let {g(k)}:=0 be a sequence of random vectors satisfying
(3.3.20). Let (x(k)}._, be given by (3.3.1) with u(k) = 0, k =0, 1, ...,

then for all k = 0, 1, ...
* %
E{gd (k)x'(k)} = - £ (k) (3.3.22)

%
where Z (k) is given by (3.3.11), (3.3 12).
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Proof: We shall use induction on k. For k = 0, using (3.3.21), (3.3.1),

y (3.3.11) and the given statistical law:

: * % )

N E(@ (0x' (0] = (¢ - ¥ (0c(0){x x’ - E[x(0)x'(0)]}

, (3.3.23)
1 =~ +V(0C@E =-Z (0

4 =-Z +¥ (0c@z =-Z (0)

] Assume that (3.3.22) is trus for k = 0, 1, ..., u. Using (3.3.21), (3.3.1),
é (3.3.11), (3.3.1%2) and the given statistical law, we have:

B[E (Dx' (a+1)] = [L -V (+1)E D) 1 {AGIE(" (m)x' (n) A" (n)-R(n) ]

: (3.3.24)

) % % ~% w3k

: ! = ~[} (@-¥ (DCHDE ()] = -E (n+l)

! :

-

d The lemma is proved by induction.

o Corollary 3.3.5: Let {gﬁk)}:_o be a sequence of random vectors satisfying

L = =

P ~ % % *

3 . (3.3.21) where V (k) € Uk_l(z (k - 1)) with £ (k - 1) given by (3.2.11) and

- (3.3.12). Let {y_(k)}:=0 be given by (3.3.1) with u(k) =0, k =0, 1, ...

= Then for all k = 0, 1, .

: % :
: E{e (K)y'(K)} =0 . (3.3.25)

. Procf: We shall use induction on k. For k = 0, since using (3.3.21),

i£§5 (3.3.1), (3.3.22) and the given statistical law, we have

o

g X % %

5L E{g (0)y'(0)} = E{& (0)x'(0)}C'(9)+E{& (0)n'(0)}

(3.3.26)

ﬁ . ¥ . Lk _
_ -1 C'(0)+V (0)9_(0)_;09; (0)+V (0)Q(0) = 0

* %
Assume that (3.3.25) is true for k = 0, 1, ..., n. Since V (n+l) ¢ Un(g (n)),

using lemma 3.3.4, (3.3.11) and (3.3.1), we have
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E;E*(n+l)1'(n+l)? E{g%(n+1-§f(n+1) i’(n+i)+E{§f(n+l)ﬂ'(n+l)}

= =L (1) ' (n#))40 (nH1)Q(ntHL)

= 3 ~% *
= =L (n+VC (nt)+2 () (ntl) -V (nHl)C(nt1)E (n)C' (at+l)
| = —L (n+1)C' (nFL)4E (n+1)C' (ntl) = 0 (3.3.27)

the corollary is proved by induction.
| We are now in a position to prove (3.3.20). The results are stated as
a theorem.

% © x e
Tneorem 3.3.6: Let {& (k)}k=s be given by (3.3.21), where V (k) ¢ Vk_l(g (k-1))

with I (k-1) given by (3.3.11) anc (3.3.12). Let {y' (k)},_, be given by
*
(3.3.1) with u(k) = 0, k=90,1, ... . Then for allk =0, 1, ..., & (k)

satisfies the projection equation; i.e.,
E(z ()y'(1)} =0 i=0,1, ..., k . (3.3.28)

Proof: We shall use induction on k. By Corollary 3.3.5, (3.3.27) is true
when k = 0.
Assume that (3.3.27) is true when k =0, 1, ..., n. Fori=0,1,..., n,

we have from (2.3.21) and the induction hyvpothesis that
B (nr)y' ()} = (L - T (et CuDAMIELE (y' (D} = 0 . (3.3.29)
For i = n + 1, Corollary 3.3.7 gives
E(8 (m+ Dy'+DDI=0 . (3.3.30)

Combining (3.3.29) and (3.3.30), we have that (3.3.28) is true jand the

theorem is proved by induction.
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In view oY the Projection Theorem, this means that the estimate g%(k)
generated via 6%, Te 30*, ie the a.s. conditional mean of Xk),k=0,.,... .
The results are also true when u(k), k. =0, 1, ..., is a nousero put known
control sequence, for one car always subtract off the deterministic contri-
bution due to the nonzero kncwn control sequence. The general situation
where the u(k), k = 0, 1, ..., are generated by feedback of the observation
sequence, shall be considered i~ detail in Chapter 5.

From che above d:zcussions, we note that in the general casge, thare is
more than cne optimum classes of observers which will yield the same per-
formanze; only in the sp:cizl case when Q(k) > 0 or C(k+l)u(k)C'(k+l) > O,
k =0, 1, ... (cr both), there exists a unique ontimum class of observers.

3.4 Minimal Order Ontimum Observers for Stochastic Systems

Let ﬁ%(k) € Uk_l(gk(k -1)),k=0,1, 2, ..., specify an op:imum
class of observers. The class of minimum order op*imum observers associated
with {g%(k)}:=0 is ﬁg*, where p is the minimal order (or dimension). To
find the number p amounts to finding the rank of the matrix [}n - Q&(k)g(k)].
We shall see that, depending on the observation noise te have that the
minimal order optimum observers will have order which ranges from n - m to n.

Let us assume that the observations are partly deterministic, i.e.,

¥, (k) <, (k) 0, (k)
yk) =t oo =] ..o Ixk) +] ... (3.4.1)
xz(k)_’ C, (k)

o

m m
where Xl(k) e R 7, lz(k) e R 2. The vector lz(k) i¢ t'.e noise-free component

(Figure 3.2). This assumption has no loss of generality, for’by appropriate

transformation of the observation vector, all problems where the observation
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noise is degenerate can be put into this form. We shall assume that

_x;_l(kj
0
has covariance matrix Q{k).
QM 0
Q) =} ... I ... H Q) >0 H Q) e . {3.54.2)

0 o 11
= ~m,m

272

Definition 3.4.1: A system with ourput w(k) is callcd compatible with

respact to the noise-free observation ¥, if for k=0, 1, ...

Cy(Rim) = C,(K)atk) = ¥, (k) a.s. . (3.4.3)

We shall also say that an observer GT’ T e SV’ is compatible with re-

spect to }izif ics asscciated estimator 81., T ¢d_, is compatible witn respect

v
0 ¥,

Theorem 3.4.2: Let _\z*(k) € Uk_l(_i_*(k - 1)), with f(k ~ 1) given by (3.3.11)
and (3.3.12); any (9,21,, T ¢ 5\-,* is compatible with respect tc the aoise-free
observation Yy

Proof: Using Corollary 3.3.5, we have

<% <%
PROQK) = (IR ;3 k=0, 1, ... . (3.4.4)
Fartition the matrix _\'_I,‘(k) into

V) = [0 k) ¢ Tk NORE Vi(k) €
- B | . —2( s ll( ) e r‘nm ! -\-Z(k) € drm
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1 f

; ‘ Equation (3.%.4) implies

g E VM = k) o k=0,1, ... (3.4.6)

§ |

{ P ) . -
9. = ) 5 k=0,1, ... (3.4.7)

) -

b3
-~
iy

where £ (k) satisfies (3.3.11) and (3.3.12). The theorem follows from

e o vt %

(3.5.7).

: : In the following, we shall consider the special case where the sequence
! of matrices {R(k) };_0 are all positive definite. The general case can be
q ' =
. i
E }’ trzated in a similar apprcach. Since by assumption R(k) > 0, k=0, 1, ...,
’ . % %
i Z (k) is given by equation (3.3.13), and V' (k) given by (3.3.14) specifies
Z : the unique optimum class of observers.
\ i Lemma 3.4.2: Let R(k) - 0, k=0, 1, ... . f the noise-fre= sbservation
& n
= 2 %

. ¥o(k) e R 7, k=20, 1, ..., tnea [ (k) given by (3.3.13) is of rank n - 2,
E k=0, 1, ... .
y Proof: By compatibility (3.4.7) we have
g rank 2 (k) Sn-m, k=0,1, ... . (3.4.8)
5:?, . 2
: from (3.4.8) and (3.3.14), we deduce that

. =Ty o *,
: El(k)_-_ () Ql(k)!l (k)

g * * ¥
= Ql(k)j; (k)gl(k) £ (k-1)-i (k-1)C) (k)

. E -1 % R
o (gz(k)g (k-l)Qé(k)) Qz(k)A (x-1)1  (3.4.9)

T

TTR T e R T

e

1 TR P
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where
2500 = Q) (R4€, (0 [ (1)1 (k-1)E ()
(€, (8" (=13 ) NG, A (e Iy Y > 0
k=0, 3, ... . {(3.4.10)

(In deriving (3.4.9) from (3.3.14), a falr amount of matrix algebra is

needed.) Let us define the matrix Ef(k - 1) by
Fo 8 e S NP
T (k1) 22 (k-l)gz(k) c, &)z (k-l)_gz(x)) gz(k)g (k-1) H
k=20,1, ... . (3.4.11)

Now equation (3.4.9) can be wvritten as

€ 00Z () = @ (94" (g, W[4 -1 (D] 5 &

0, 1, ... . (3.4.12)

We note from (3.4.11) that if a wvector v ¢ N([f(k - 1))’then it must be true
that éx(k -1Vve N(g,(k)). Now suppose that rhe same vector V ¢ N(gx(k));

then, from (3.4.9), we conclude that
Q) (A" (R)E, (08" (R-D¥Y = 0 = 8™ (-1 € N(E, ()
k=20,1, ... . (3.4.13)
Therefore,
A5k - Dy e NE®) 5 k=0,1, ... . (3.4.14)
But from (3.3.11), we have

*
0=8(k=-1y; k=0,1, ... . (3.4.15)
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Since gf(k - 1) ~0 vk, ve v .:* “ave v = 0. Thus,
W k- INDANC &) = {08 k-0,1, ... . (3.4.15)

Clearly, the rank of [f(k - 1) is m,, and so N(I?(k - 1)) has dimension

; n~-m, {(3.4.16) implies that

zank (£ (k)) 2n-m, k=0,1, ... . (3.4.17)

Vigr> -:-\'{“\\:JM’:\ i

Equations {3.4.8) and (3.5.17) imply that rank (k) = n - my,

Theorem 2.5.3: Let R(k) >0, k=20, 1, ... . If the noise-free observaticn
m
¥.{k) e R ", k=0, 1, ..., then the class of mininal order observers is

D

R ok et el o come 42
— [

of order n - m2'

Proof: From the remark made at the beginning of this section, one needs

i)

e B i e ® v B

%
only to prove that the matrix [ln - ¥V (k)C(k)] has rank n - m,, k=0, 1, ...

(3.3.13) and (3.3.14) give us

L

~

L-Y®Wemls k- =2® , k=01, ... . (3.4.18

EEer s m ORI N AL O i s v =g

8y assumption, R(k) -~ 0, k =0, 1, ...; thus gf(k) has full rank for all k.

RN ST

By lemma 3.4.2, ;ﬁ(k) has rank n - My s k=20, 1, ...; therefore,
%
- U -
[L - V (k)C(k)] has rank n m,.

To end this section, we shall give one explicit minimal order optimum

PICAS dalio ararachawe o

observer and its associated estimator for each case:

TRGT

§. Case 1: m, = 0

AN

E The class of minimal order optimum observer is of order n, and one

:: expiicit optimum estimator of minimal order can be constructed:

s * * * %

5 €:w (k+l) = (_I_n—y (k+1)C(k+1))A(K)w (kK)+V (k+1)y(k+1)+B(k)u(k} (3.4.19)
&

S

-ZARe 2 2N SOV A
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% [
where {V (k)}k--'o is given by (3.3.11) to (3.3.12). e norice that this

is the Kalman estimator [39]. (Figure 3.3.)

Case 2: m, =0

1

The class of minimal order optimum observer is of order n - m, i.e.,

k=20, 1, ... such that

there must exist P(k) ¢ nn(n-m) and T(k) ¢ H(nf-m)n’ 3
Ik
%
. = I
[2(k) :! IN... ln . (3.£.20)
c(k)

~

Since T(k) ¢ M n and C(k) € Moo (3.4.20) also implies that

(n-m}

TV k) = 0 . (3.4.21)

: ( \ = . 28 =
O-my > IGOR(KY = I ; CKP(K) =0

“n-m -m(n~m)

*
To specify one explicit minimal order optimum observer, let {P (k) }:=0 be

any sequence of matrices such that

CK)P (k) = K=0, % oon . (3.4.22)

—Om (n-m)

* o
Let {T (k) }k=0 be the solution of

s TR () =I5 k=0,1, ... . (3.4.23)

% ®
TV &) = .

-Q(n—m)m

The solution for (3.4.23) exists and is unique because we know a priori that
(3.4.21) must have solutions (nonunique). The choice of fg*(k) i:O

is nonunique, and is usually chosen so as to simplify computation.

¥ ;
Note that the condition g(k)g‘(k) = _]Z_m is automatically implied by
compstibility.

- e gl A~
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Case 3: 0 < m2 <n

The class of minimal order optimum observer is c¢f order n ~ m,, i.e.,

,y k=0, 1, ... such

there must exist P(k) ¢ Mn(n~m2) and T(k) € ﬁ(n-mz)n
that
'_'1;(k)
(G 1Y @N ... | =L (3.4.26)
c k)
and T(k) is of rank n - m, . Choose T(k) such that
f-jf_l(kﬂ
Tk =l ves H Iﬂ(k) £ M(n-m)n (3.4.25)
[gz(m
and
T, (%)
e
is of rank n; thus Il(k) must be given by
c, (k)
T (k) = (K (R) DK, (00 o | 2 RCK) (3.4.26)
C, ()

where gl(k) € Mm1ml’ Ez(k) € Mmlmz. Partition P(k) into

B(k) = [By(k) DB, (0] 5 Bk e M“‘“l v Byt e M L (3.4.20)

? Equations (3.4.24) to (3.4.27) imply also that
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IZ(k).I
B, (k) I 2 (WK (K) + VY ... = - (3.4.28)
C(k)
Since
T, (k)
. e M s
nn
C{k)
(3.4.28) also implics
LWE® =L, 5 LB =0 g

I, ()R, (KT, ()Y (k) = 0 5 SO, (KMHEIY () = I

(n-m)m
(3.4.29)
* x % % *
Partition V (k) = [yl(k) i.gz(k)], E&(k) £ Mnml’ yz(k) € Mnmz; compatibility
implies:
CUB 00 =0, LU0V () =0 5 C, (0N ®) “L, - 040

Using (3.4.30), the last equation of (3.4.29) can be reduced to:

. % _
€, (R, (0K, (k) + ¢ (Y (k) = 0 (3.4.31)

172

€, (0P, (K, () + € (Y, (k) = L (3.4.32)

Now to specify one explicit minimal order optimum observer let us

* 0
(L 5
choose ‘P (,c)}k=0 such that

* % L % . * *
P = (200 D E,(0] 3 RO e M, R() e M (3.4.33)

1 (n-m)
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* *
and gi(k), gz(k) satisfy:

*
s C,MR 0 =0 . (3.4.34)

*
SR, (k) = 0
2 -m ]

{n-m)

% * .
El(k) eM gé(k) e M be the solution of the

*
Let Zz(k) € M(n—m)n’ o oy

following:

* x . R

1%
C. (OB (K. (k) + C (V. (k) = I
e e =R T S
* )P (K (k v ) = s k=0,1,2 (3.4.35)
SOOR] (KL (1) + Th(R)V (k) = 0
*OOP ) = 1
I_z( )_2(-) = =n-m .

Solution for (3.4.35) exists and is unique ssince we know a priori that
* o

there are solutions for (3.4.29). The choice of {2_(k)}k=o is nonunique,
and is usually chosen so as to simplify computation. One minimal order
cptimum estimator is ST*’ where

%

K (k)C(k)
%
T (k) = coe (3.4.36)
*
T, (k)
ES ®

and K (k), IQ(k) are given by the solution of (3.4.35). (Figure 3.4.)

3.5 Detectability and Observability of Linear Systems

Let us consider the totally noise free situation, i.e., R(k) =0
Qk) =0, k=0,1, ... . We shall discuss the notion of detectability and
observability of the deterministic system Sl in terms of its structural

propé}ties.

vl
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Definition 3.5.1: The system Sl is said to bLe detectable at ko if for

. . 1 .
5(ko) e R arbitrary, there exists an estimator ET described by

z(3+1) = TG+LAGIP()2GI+TGHDAGIV() y (3)+T(G+21)B()u(F)
e; (3.5.1)

u(@) = 2@zGHMyE) 5 oz ) € 5 = {I(k daja € &

o

we
[y

such that w{j) » x(j) as j » =». The systenlgl is said to be detectable

if it is detectable at ail k_ ceey =1, 0, 1, ... .

Definition 3.5.2: The system gl is said toc be completely observable ac k
of index v if for x(k) € R" arbitrary, we can deduce x(k) by observing
y&), y(k+ 1), ..., y(k + v-1).

One can easily show that an equivalent definition of observability

is:[42]

Definition 3.5.2': The system Sl is said to be completely observable at

ko of index v if there exists Vv <® such that
= fe? e 41 t . (L4 P {1l vy g
Qk v [c (ko):gA(ko,kolg (ko+l)2"°19A(ko+v 2,k0)g (kofv 1)] (3.5.2)

b

has rank n, where
9, (53) 8 A(DAG-L)..LAG) $, (1,1+1) 4 I 232k . (3.5.2)

The system Sl is said to be completely observable if it is completely ob-

servable at all ko with index v&; ko = ...y =1, 0, 1, ... &

From the above definition, we cannot conclude a priori any relation
between detectability and observability of the linear system. Intuitively,
we may think complete observability implies detectability but at first sight,

this implication is not obvious. 1In this section, we shall investigate the

relation between observability and detectability.
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stall assume tkat A(X) is fnvertidle fora2lik=...,-1,0,1, ... .

hd
*

é2note for 3 I i:

b

. ~1
L3y cd (j);:_‘(i,i - 1)

0e

AH

[}

I

£ wa assume sewe a prisri distribution on the imizial coadition eof x10),
then wa c2n =eXe use of the reszits in Sz2ctien 3.3 o obrain the 23uation

for the arror sovarizmcs, this is given by {see (3.3.11), (3.3.12)}

= . = -3 £
T =2 () - T EECEH) ()0 5 k<0, L, ...

- - - L] - ] '1 -
0) = - - > £(0)(E(G)Z C' (M) (0
where
= =

Zik) =af)l (2" T k=1, 2, ... (3.5.7)

ancé
¥ ) 2 . % . ‘

T e {2 G-1)) =¥ e VG (-1CT()) = L GeDET (R

}: be a sequence sztisfying (3.5.6) and (3.5.7)

X
s
gl
«<31
~
”
L
"

G, (k- 1)). If I~ 0 (bur arbitrery), then the null
space of ;h(!-c) equals to the range space of ,'z‘:‘((},k - 1)gk, k=0,1, ... .

Pronf: e shall use induction on k. For k = 0, we have from (3.5.6)

-

*
= {0)Q = Z fO)C'(0) = £ C'(O0) - zc'@=0 . (3.5.8)
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A
- Thus we conclude that
—‘ * > * - -
3 NE (©)) D Ra(go) 3 dim N(E (0)) 2 dim Ra(Qo) =n (3.5.9)
; where Ra(-) denotes the range space., By assumption, -;':a > 0, thus from
5 (3.5.6) we have
3
f NET(0)) N N C' (0) (E(OE C' (N emE,) = {0} (3.5.10)
C(0) is of range m. therefore (3.5.10) implies
3
i . ]
2 nm 2 dirm N(Z (0)} . (3.5.11)
g Equation (3.5.9) and (3.5.11) imply that
b "* = = 5 Y - 5.
N(Z (0)) Ra(go) R(_U_A(O, l)Qo) . (3.5.12)
5 Let us assume that for k = i, we have
LT %
: i = w0 3 = =
; NCE (D) Ra(gA\O,:L 1)gi) . (3.5.13)
2 From (3.5.4) and (3.5.5)
t‘ . _l s I‘ ] 2 = ’c,| -
i A “ (1)) lA(O,l l)Qi :_A(O,l)gi . (3.5.14)

r~
[14
[u]
<
(4]

Ra(_Q_A(O,i)Qi), then there exists some x € R" such that

P2t o

v o= 9, 00,1)Q;x = (éfl(i))'yg(o,i - 1)Q;x (3.5.15)

and so A'(i)v ¢ Ra(_-_b_['\(o,i - 1)gi), and, by the induction hypothesis, we also
; * * *
have A'{i)v ¢ N(Z (1)) or v € N(A (i)). By (3.5.6), we conclude v ¢ N(I (i + 1)).
*
Also, by compatibility, the null space of £ (i + 1) includes the range space

of C'(i + 1). Combining the two, we have
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%
- Y t - -
N(E (1 + 1)) DRa(_L_A(O,l)_(}i_'_I) . (3.5.16)
We also have thv inequality
im N(Z (i > dir ! i . .3.
dim N(Z (1 + 1)) 2 di Ra(_g_A(O,l)gi_*_l) (3.5.17)

Lec S, = {v ¢ R'ly ¢ R_(Z (1)) NN(CGE + DAGE)}. Since R" is finite

dimensional, from the induction hypothesis (3.5.13), we have

R (" (1)) \(glJ (0,i - 1)). Therefore any v ¢ Si is described by

C(itl)A(i)v =0 : Q]fh-_a_A(O,i—l)v =0 ’QJ.-HU 0,i)A(A)v =0 . (3.5.18)
Since by assumption A(i) is nensingular, equation (3.5.18) implies that

dim S, = dim N(Qi-i—liA(O’i)) = n -~ dim Ra(g_A(O,i)Qi_*_l) . (32.5.19)

Let §;l be the image of S through the transformation I (1)A (i); i.e.,

§;1 = {w e Rn§_§ (DA'"{w=v; ve Si}. Let STl be the subspace which is

&
F

equal ro é;l modulo the null space of I (1)A (i). S;l has the same dimension

as Si’ and so

. —1 - - . 0! .
dim §;” =n dim Ra(_.iA(O,l)gi_l_l) . (3.5.20)
Now let w € S;l, w # 0; then from the definition of Si and Sfl, we have
* L
CE+12 (Dw=0 ; b (Dw#0 . (3.5.21)

From (3.5.6), we conclude

% *
A+ Dw=6(DwF0 . (3.5.22)
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ERLL Y A @ 0

* -
Therefore, the null space of £ (i + 1) and the space Sil have only the zero

element in common; thus

MV RO W et

e

. v *. < - . -lx: . KL 3 -
dim N(Z (i + 1)) Z n - dim S; dim Ra(iA(O,-)Qi+l) . (3.5.23)

Equations (3.5.16), (3.5.17), and (3.5.23) imply

Iy e

~ s

*
NE 1 +1)) = Ra(gi(o,i)gi+l) . (3.5.24)

: The theorem follows from induction.
A direct consequence of the above theorem is the following result :

Theorem 3.5.4: Let Sl be ccmpletely observable at time k of index »k; then

there exists an optimum observer &', T ¢ 3V’

A L L Y

which will reconstruct the

v exact state, x(j), in at most v, steps (i.e., at time k £ j Z k + vk).

k

i Thus if gl is completely observable at time k of index v, , then 8. is de-

k 1

1 is completely observable, then S1 is detectable.

Theorem 3.5.4 generalizes Kalman's results {41] in deadbeat estimatox S;

tectable at time k; if S

IREC LTS

for this reason, we may refer to s..n an optimum observer @%, Te qiﬁ, as a

deadbeat observer. Clearly there is more than one class of deadbeat ob-

k=0’

Among these, we shall find the simplest deadbeat observer.

- - %
parameterized by {V(u)} V(k) € Uk_l(g (k -1, k=1, 2, ... .

Theorem 3.5.5: Let S, be completely observable; the class of minimal order
Y

leadbeat observers is of order n-m .

Proof: <Clearly, the class of minimal order deadbeat observer must be of

order greater than or equal to n - m. To prove the theorem, we need to

. ~R @ ~% B
; find a sequence {El(k)}k=0’-!1(k) £ Bk_l(g (k - 1)), k=1, ... such that
] -*
? . the matrix (ln - Xl(k)g(k)) has rank less than or equal to n - m for all
1
k=1, 2, ...

BN T AR S A ]

e — e e e ittt L AL an g e ——— e R—

REITS s e
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Censtruct

*
1

<t

() = 8% -1)8" () (k)" (=1)C" (k¥ + ' (k) (Cli)e’ ()T -
(3.5.25)
(L - C008"(-1¢" () (CWa tenie’ G’y k=1, 2, ..

3 . . . .
where )" denotes the pseudoinverse of a matrix M. Using the properties of

pseudoinverse (see Appendix A) we have

1]

T 0c8" (=108 (1) = 47 (k-1)e" () (€A™ (R-1)g" () e (0)a™ GemDIC" (1)

~% * * 3 *
FH(CR)a (k=1)C" (K)) (CU)A (k-1)C' (RN C(3L k-1)C" (k)

P s G-0e' ) = A G-DCW; k=1, 2, ...

(3.5.26)
Therefore E:(k) € Ukul(g*(k -1)), k=1, 2, ... . From (3.5.25), we deduce
SO - T MRCE) = ¢ - C) =0 . (3.5.27)
Since C(k) is of rank m, (3.5.27) implies that
rank (L - 3,00CH)) £n - m (3.5.28)

and the theorem follows.

Finally, we would like to derive a test for the detectability of linear

systems. Using (3.3.7), we have easily the foliowing:

Theorem 3.5.6: A system Sl is detectable if and only if there exists a

uniformly bounded sequence {X(k)}:=o such that
| L < —azli_j I
| gev(l,J)ll Zae 3 0pa%y > 0 (3.5.29)
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'

where for i Z j:

8, (V(k+1)) £ A(K) - V(+)C(HDAK) 5 g_av(i,j) £ 5 (VEHL))E, (V(D)

ee. 6. (V(IHL)) . (3.5.30)
|

3.6 Asymptotic Behavior of Optimum Eciimators

In this section, we shall investigate the asymptotic behavior of an

optimum estimator &g, T ¢ S.., for the stochastic systex 8, . We shall say

2

that the system 32 is detectable if its deterministic correspondence, 31,

v

is detectable., The investigation is carried out by considering the minimal
Riccati sequence {Ef(k)l:zo which describes the evolution of the minimum
error covariance.

First, let us assume that the initial time is ko, and consider the

* %*
behavior of £ (k), as k >~ =, where I (k) satisfies

* * ~% *
I (k+l) = 4 (k) - ¥ (k+l)C(k+1)a (k)
(3.6.1)

* . ' -1
E(k) = I - EC Gk ICUIIC (k) + k)] ek )L

o *
and V (k) ¢ Vk_l(§ (k ~ 1)), k = ko + 1, ko + 2, ee. .

%
iieorem 3.6.1: The minimum covariance error I (k), +ill remain bounded

for all k = ko + 1, ko + 2, ... if and only if the system 82 is detectable.

Proof: 1If 82 is detectable, then from thecrem 3.5.6, we note that there

k=0
solution of (3.3.7) (with ko replacing 0) will remain bounded for all

must exist a uniformly bounded sequence {V(k)} such that the resulting

X -9
k = ko, k +1, ... . Since {Z (k)}k=0 satisfying (3.6.1) is the minimal
sequence with respect to the solution set of (3.3.72 we conclude that

%
L (k) must also be bounded for all k = ko, ko + 1, ... .

e e L s e e o e—ie v e
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Conversely, if‘gf(k) remains bounded for all k = k , ko + 1, ... then

from {3.3.7), we have

gy G < nnle""li‘ji asa, > 0 (3.6.2)
vk =

and so 8 is detectable.
Next, we shall assume that the present time is k, and assuze that the
initial time ko -+ ~x,

Let us rewrite (3.3.9) in a core suggestive form: {set k; a ko -1
I, KR0GE ) = (AK)-V (k) C(RFLAK)IZ (R, k050 ) (A(K)-¥(k+1)C (k+1)) "
~:-(;n -V (k+1)C (k+DR (k) (_1_n ~V(k+1)C{k+1)) "+V{k+1}Q(k+1)V"* (k#1); k = k;,k;-i-l,...

;v(ko,ko;;o) =I, - (3.6.3)

As we have noted, (3.6.3) is the same as (2.5.1) except for scme changes in

the symbol (3.3.14), (3.3.15). ¥e shall still use the symbel as defined

by (2.5.2) with the obvious change (3.3.14). As usual, we shall denote the

minimal Riccati sequence with respect to the snlution set cf (3.6.3) by
o

E3
iv t.o 3
iz (k,ko,-o),k=kc,'.

Lemma 3.6.2: There exists an unrique bounded sequence {;f(k;g)}:=_w such

that

* %
lim Z (k,k!30) = Z (k;0)  for all k (3.6.4)

k'»—w

*
and z (k;0) satisfies

T0H50) = v (@ D),2 (500 5 T ) € 4 @ (50)  (3.6.5)

if and only if the system SZ is detectable.

B JUNE.
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Proof: Let us denote
8, (V) £a) - VCOHA®K) ;5 k=k!, k' +1, ... . (3.€.6)
Using lemma 2.5.2 and Equation (3.6.3), we have the inequality
& (U (k=13 005 (k-1,k'~150) - (k-1,k';0)56! - (¥ (k,k'~1;0)
~%-1"— Y7 == o T = Y= k~1"— Y0 T

* *
S E (iGk-L0)-D (k,k150) . (3.6.7)

3]
I)('

%
Since I (k‘;,k;—l;g) 2 0 and (k"),k;;_()_) = 0, (3.6.7) implies that

I Gk ~1;0) 2 £ (k30 forallk2k . (3.6.8)

%
if 82 is detectable, then by using theorem 3.6.1, % (k,ko;_(_)_) will be

bounded for a fixed k and all ko £ k. By the monctone convergence theorem

of nonnegative operators [32], we conclude that there exists an unique

*
L (k;0) such that

* * %
lim I (k,k';0) = I (k;0) 2 £ (k,k ;0) 3 k > -= . (3.6.9)
KT 0’— = = = o= f)

o

Let us define
ok % % % *
Z (k+1;0) = ﬂk(l (k+1),Z (k;0) ; V (ktl) ¢ Uk(); (k;0)) . (3.6.10)
By lemma 2.5.2 and (3.6.8) we have for all k(') > =003
~de ® ~% % % *
Z (k+1;0)-Z (k+1;0) = wk(X (k+1),Z (k;.Q))-}.’_!k(_\L (k'*'l,k(;;_Q)zg(k.L‘(;;Q))

~% % % ES
£ 9 V(L& 50),2 (k300D -8, (V (k#1,k1507,% (k,k150)) . (3.6.11)

-i-".'.: '_.. * - '-.. s
! (k,ko 1)9_) € 1&(_1(_}; (k l’kO l,g)) ’ 1= 0’ 1




-80-~
* *
‘ Since Z (k,k(";g) » L (k;0) as k| ~ -=, (3.6.11) implies
! x *
. £7(k+1;0) 2 £ {k+130) . (3.6.12)

From (2.5.12) (3.6.9) and lemma 2.5.2, we have for all ké:

A% ~% * Lk * *
: L (k'*'l;ﬂ)z_!!ik(_‘-_’ (k+1),% (k,k;;g)li_wk(l (k+1,k:);_Q) )y (k,k(',;g)) =z (k+l,k('>;9_)
f (3.6.13)
3 and so taking k(') » =003
o %
3 L (k+130) 2 L (k+1;0) . (3.6.14)
L Combining (3.6.12) and (3.6.14) we obtain (3.6.5).
Cenversely if (3.6.4) and (3.6.5) are true, then it mus. be true that
3 C el < -, li-3| ,
;; “Oe"*(l,J)H < ae g, > O {3.6.15)
4 v

| and so gz is detectablc by theorem 3.5.6.

*
Theorem 3.6.3: There exists a unique sequence (£ (k) };Z:_w such that

% %*
lim I (k,ko;g_o) = L (k) for all k (3.6.16)

k'-»-—:n

*
with Z 2 0; and Z (k) satisfies

.

s
% ~% * £ % % -k .
£ (ktl) = 5 (V (k+1),2 (k) = A (K)-V (kHD)C(kH)A (k) 5 V (ktl) eV, (2 (k)
3 if and only if the system 32 is detectable.
:
 : Proof: Using lemma 2.5.2, we have
3

% * % <% %
5 @Gk D) (@ (k52 -E (koK 500080 (F (k52 )ISE (¥l k52 )

. * ~% * * ~ %
. & Rl k! 50058, (87 (k500D (B (k2 )L (k! 50008, (7 (kK 50))

(3.6.18)

gt g OBCS M s S I

s <

PIACY o Sy TR
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Since I (k' k';2 ) =

oL, z, Z 0, tuen (3.6.18) implies that

* *
S IU(kHLKIE ) - B (kL) 50) S g (kkZ 20 5 (k)
where

1. =% PR | ?., 5% 1 1.
ERCSSON-¥N @, k!0, @ (k-;,ko,g)...gké(g (k!,k!50) . (3.6.20)

If the system S2 is detectable, then by thecrem 3.6.1, we must have

-uzlk-k;l

Heg Gk < > 0 (3.6.21)

%1:%9

and so using lemma 3.6.2 and equations (3.6.19), (3.6.21), we have

Lim £ (x, K!5£) = lim £k, k!50) = I k0 ) . (3.6.22)

HEE T k-0

Equation (3.6.17) follows from (3.6.5).
The proof in the reverse direction is the same as in proving lemma

3,6.2.

Finally, we shall consider the time invariant case where A, C, Q, R

are constant and bounded matrices. In this case
Iy 1, - |
¥ (k, k Z ) = Z (k k §0) (3.6.23)

thus taking ké = 0 is th. same as coasidering k + <. We shall only con-
sider ké = 0, and k =+ «»,

3
Theorem 3.6.4: There exists a boundad g’ such that

lim E (k,0; Z ) = (3.6.24)
k->w

’

*
end I satisfies the algebraic equation

- - . —————" i 0 L



AL R v aat
-

* * ~J¢ o> ~L A 1 * : \
- et oty s v dwen jvea'e @ =ac)
i i (3.6.25)
l | 9, *
L A =nza e (3.6.26)

if and only if the system 8? is detectablie.

{ Proof: 1In the time invariant case

s b\ S L St

4 (0,0 =p WD Ly, ; gW=8  W2sw . G.6.27)

7
o
|

Serad o)

Using lemma 2.5.2, we have

¥ (41,0500 - I (k,030) 2 8T (k,030)) (£ (k,050) - £ (k=1,0;9))

~%

§ 8 (¥ (k,0;0)) . (3.6.28)
A |
» }
- % N
3 ; Since £ (1,0;0) 2 0, (3.6.28) implies that
£ (k+¥1,050) 2 £ (k,050) k=0,1,2, ... . (3.6.29)
;

%
By theorem 3.6.1, £ (k,0;0) will remain bounded if and only if 8. i5 de-

*
tectable, and s> by (3.6.29), one concludes that there exists I suach that

*
lim £ (k,030) =L . (3.6.30)

k-0

T TR A T LR A

*
Using (3.6.23) and lemma 3.6.2, S satisfies the algebraic equation

£ k% * 3 * ~% *
eg@,E) = ~¥ca ;¥ oewuE) (3.6.31)

(Aotiw ~vEHEE F1t

*
and L is given by (3.6.26) if and only ifé§2 is detectable. Using theorem
3.6.3 we have the desired results.

H Theorem 3.6.5: 1If 82 is detectable, there exists only one nonengative

%
2\ definite matrix Z which satisfies (3.6.25), (3.6.26).
E
2
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Proof: Let us define
=0 ; Vevww (3.6.32)
and
] . - > ~
Peoe it s Veweh (3.6.33)
i *
By (3.56.30), such a constructed sequence of g} will converge to Z , which
satisfies (3.6.25), (3.6.26).
Let £ 2 0, and I satisfies (3.6.25), (3.6.26); i.e.,
P=0@D ; Vvevuvd . (3.6.24)
By lemma 2.5.2, we have
s@E-he@ si-rahd - heehy L 3.6.35)
By construction, L = 0, thus
0<i-gts 85 (1,00% 8] (5,0) (3.6.36)
where
8,150 £ o@het™ ... 8 (%) (3.6.37)
If 82 is detectable, then
-azli-jl
[ @,3) 1] < aye ay,a, > 0 (3.6.38)
thus we have
o asiow (3.6.39)
and uniqueness follows.
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Ia this chaprer, we have cdiained 3n optizum wmbiased estizator for

the stechastic systen S;. ;here the observatica 10ise =ay be dogenerare

(L1

(Q{x) 2 ) or sirgular {C(k) = 0). 1ia essznce, the optizum estizator is

specifizd by the relarions:

2 (21) = TEEDAGEE)z GTEREAGT () (k-1 B uik)

2
2 (3.7.1)
AW = MOz G W 5 20) = TOx
whove 5*&) is che opriczal estizares of x{k). (See Figure 3.5.) The =atrices
2(x5, T(k) sawisiy
Jk
P(RIZR) + ¥ (RIC(x) = 1 (3.7.2)
2ad U (k) is given by {see theorexz 3.3.1)
ORI =1, 2 s T = {0) [C(0)Z C" (0)+Q(0) it
l £ L’:;"'l‘:’ _!\.l)) * N=T L, L, e 2 X = _0_ '-{_). 3
E
Z(k#)) = 2 (z)-t: (x#2)Clks1) 2 O
(3.7.3)
20 = - = €°{0){c(0) (0)~Q(0)l "(0)-
S 2 A ARG .

=% L .
Note that 1V (k): _. can be precomputed when the structure of S, and the

k=0

L%
statistical law of the uncertainties are kmown. In general, <V (k) k=0
may not be unique. In the special case when Q(k) > 0 or C(k+1)R(K)C'(k+l) - O
P A
we have uniqueness in ‘V (k) }k=0 (see theorem 3.3.1).

L% = o
Gnce {V (k) ‘y=g 1S found, we can choose different 12{k) =g 30d

. A
*T(k) k=0 such that (3.7.2) is satisfied, and so one can construct different
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2
optimur estimators e;, where the dimension of the observer state vector

L4
2(k) are different depending on the choice of {T(k)}, ., Ti{k) = 8?*(k)'
%=

\

It has teen shown that in the speciai case whea R{(k) - 0, the minimal
order optinum observer is of dicension n - a, vherz o, is the number of
noise-free channels available. Though the proof is given for the special

cz2se, it is cenjecCured that the results will be true in the general cese

when R(k) Z 0 or even R(k) = 0.
*
Finally, the asymptotic behavior of Z (k) given by (3.7.3) was con-

3
&

idered in great detail. Xecessary and sufficient condition were derived

4

%
for - (k) to be uniformly bounded and existence of its steady behavior.

In the following, we shall discuss some 0f the relevant points in the
developzent of this chapter.

() Ddiscussion of Approaches

ifferent zpproaches are availabie tc filtering problems. The

<

Projection approach was used by Xalman te first obtain the Kalman filter.
Thae starting peint of this approach is the Projectior Theorem (Theorem
3.3.2). There is also the Baysian approach [43] where one computes the
conditional expectation of the state, x(k). Also, a max-likelihood
approach [44] is available to filtering problems. Then, there is the
aporoach of unbiased minimum error covariance estimates [10], and of
weighted leasy square estimates [43]. In the linear-Gaussian case all
thest approaches will yield the same solution (see also section 3.3). [t
is hard to argue which of the above approachs to the problem is more funda-
mental than the other, for this highly depends ©on one's philosophical
viewpoint to the prcblem. One may argue that the Baysian approach is the

most fundamental approach. This is true to the extent where one can justify
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the knowledge on a priori distribution of all the underlying random
vectors.

The approach used in this chapter seems to be a new avproach to
the problem where one starts from deterministic consideration This is
true in some sense. If the kncwledge on the a priori distribution of the
state x(0) is correct, then the approach is equivalent to that of unbiased
minimum error covariance. To verify this statement let us coansider the
stochastic systen 32 (with u(k) : 9). We look for an unbiased estimator

which is nonanticipative. In general, such ~n estimator is described by [33]:

z(k+l) = FR)z(K) + GRy(x) ;3 z(x) < R

e: . (3.7.%)
w(k) = P(k)z(k) + V(K)y(k}

The initial condition of z(0) is some linear transformation of 50; i.e.,

13

2(0) = T(0)x,_ (3.7.5)

and fer all k 2 0, we want E{w(k)} = E{x(k)}. With this restriction we

PENTU AT

have

RERAF L NG s v ey

(B(O)I(0) + V(OC(O)x, = x - (3.7.6)

~

wXar 3

We would like to construct the estimator completely independent of the

B oA T

mean of x(0}, then (3.7.6) implies

Y

F P(0)I(0) + V(0)C{0) = L (3.7.7)

and so we must have s z n - m and T(0) ¢ Q(C(0);m,s,n). For k > 0, the

unviased restriction gives
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k-1
PO [2p(k-1,0)T(0)x +Z 2p(k-1,1+1)6(C(1)z, (i-1,0)%,)

3=
P anl ¥4

+ YOG, (k-1,00x = &, (k1,02 (3.7.8)

If A(k) are invertible for all k, and the structure of the estimator is

independent of X, then (3.7.8) implies that

k-1
B(K) (25 (k-1,0)1(0), (0,k-1) + Z 2p (1, +G()C (1) o, (3, k1) ]
i=0
+ Y(ICK) = 1 . (3.7.9)
Define
k-1
T(k) = 2,(k-1,0)2(0)z, (0,k-1) +Z 2p(k-1, 4 D)G(1)C(1)x, (1,k-1) . (3.7.10)
i=0
Thea T(k) ¢ .(C{k);m,s,n) and T(k) satisfies:
Tk + 1) = FEOTMOA (&) + docatw . (3.7.11)

Such an estimator can be realized by picking
F(k) = T(k +DAK)R(x)  ;  D(k) = I(k + DAGKV(K) . (3.7.12)

Comparing with theorem 3.2.3, we see that all unbiased, nonanticipative
estimators can be realized by an observer @%, T e SV’ and its associated
estimator 8%. Therefore ,the restriction of using an observer and its
associated estimator as an estimating device is the same as restricting
ones attention to dbnly unbiased state estimators.
But if the a priori assumption on X is different from the true mean

of x(0), then it is not unbiased minimum mean square error approach. In

P |
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this situation, nearly all the approaches meativned above may not
in discussions that uiader some mild

act in

(4]

e justified. But we shall see
still valid even with incerrect

o

conditions  cur approach is
initial state x(0).

ori @ priori distribution on the

(B) Dimension of Observers
From the point of mewory storage, we would like to find the minimal

order optimum observer; but from the point of view of computation, one
order optimum observer. One may want to

may not want te find the minimal
look for those observers G., T ¢ EV* where the number of nonzero entries of
o

I(k + 1) A(k) P(k), 2(k + 1) A(k) ¥(k), and P(k) is kept to a winimum.

syvstematic way of finding such observers is available; in general this will

depend on the specific problem under consideration.

Detectability and Observability
Detectability is a weaker condition than observability (see rhecrem

©
Essentially, detectabiiity implies that in noise free situations,

3.5.4).

In all

one can deduce the current state (but not the initial state) of the system
if given infinitely long observation period, and so it is not the same as

"asymptotic observability" (if such a concept can be defined).

sequential estimationproblems, one is interested to estimate the current

This

state rather than the initial state of the system, so one would expect
that detectability would be the intrinsic property which will assume nice

behavior of the minimum error covariance when noises are present.
We showed that detecta-

physical intuvition was verified in section 3.6.
bility of linear system gives the necessary and sufficient condition for

_This viewpoint is due to F.C. Schweppe
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uniformly bounded-g*(k) and the existence of its steady state behavior.
Observability implies that in the nosse free situation, we can deduce
the initial state of the system if given a long enough observation period.
Cf course, knowing the initial state will enable us to deduce the current
state; but as long as sequential estimation is the goal, the knowledge
of initial state will be nice but not absolutely necessary. Except in the
smoothing estimation, where we are interested in finding not only the
current estimate, but the whole trajectory estimate; thus in this situa-
tion, detectability may not be enough to assure the "nice behavior" of
E*(k); we need observability of the system.

In the devz2lopment, we assume an a priori distribution on the initial
state x(0). This assumption can only be justified if as time advances
and information accumulates, the resulting performance will be iadependent
the a priori distribution of x(0). Assume that the true mean of x(0) is
Eé but we guess its mean to be X . Since the mean ¢f the state of 82
satisfies (a.s.) the deterministic equation described by Sl (see section
2.3), then detectability implies that even with a wrong assumption on the
mean of x(0), the optimum observer will give an asymptotically unbiased
estimate Thus as k » «, g*(k) truly represents the error covariance.
From theorem 3.6.3, we see that in the steady state period, the error
covariance is independent of ths covariance of x(0). Therefore if 82 is
detectable «he performance will "merge" when information accumulates even
we started off with different assumptions on the statistical law x(.).
Thus detectability justifies the assumption on knowing the mean and co-

variance of x(0).

of

if

N e ey
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(D) Secuentiallv-Correlared Observation Noise

The derived results are also applicabla to the case when the observa-

tion noise satisfies: [ses equation (3:3.1) for §]

ok + 1) = A)nk) 3 5 a(k) £ & (3.7.13)

where {zjk)}:_o, ~(0), =(C), and {gﬁk)EZ_o are independent with statistical
P s
law (3.3.2), (3.3.3) and

20 6.2 5 2 S 6.ek) . (3.7.1%)

We can define

200 ] a® 0
L sl s Re=) . st
n(K) 0 Am
: (3.7.15)
P_-;_('\) (k)
2@ ={... |3 F#Zw=1... )
Ll(k)~ )] J .

Then we have the augmented system

5k + 1) = A% + 22 Rulk) + £2(K)
(3.7.16)

w)
RSN

y(&) = (k1T ix* ()

: . a
¥e can apply the derived results to the above system 82. Note that

a . n+m . . . . .e .
x (k+1) ¢ R , but since the noise free observation is cf dimension m,

the minimum order optimum observer is of order n. This problem has also
been considered by Henrikson [46]), Bryson and Ho {43] using 2 different

approach. We can easily verify that the results obtained by applying the
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derived results to this special class of problen ; ther are tiic same as those
obtzined by Henrikson. This special aprlication will be ccnsidered in a
furure investigation.

3.8 Perspective

Observers for a linear system were intrnduced by Iuenberger {35],
£76)}. He omly considera2d contiruous,linear,time invariant systems. Ob-
servers for discrete,linear,time invariant systems were discussed by Aoki
and Huddle [37) ia relation to 2z constrained estinator problem. Observers
for discrete linear time varviag systen were first introduced and studied
by Tse and Athans {38].

Optimun linear filtering for discrete linear time varying systems was
investigated by Kalman [33], [40]} using the projection theoraz approach.
Deadbezt ostimator for discrete time invariant system vere derived by Kzlman
{41}. 7The u.biased approach to optimum linear filtering prcblems was used
by Athens and Tse {10], Tse and Athans [38]; the unbiased approach to non-
linear filter was used by Athans, Wishkner, Bertolini [42].

Letecrability was first introduced by iWonham [32] as the dual concept
of stabilizability. Datectability as defined by definition 3.5.1 seems
to be more appropriate and mere general than that of Wonham's (Wonham con-~
sidered only the time iavariant case).

The asymptotic behavior of minimum error covariance for discrete
linear systems were not investigated in full detail in the current litera-
ture. Deyst and Price [28], Sorenson [29), and Aoki [30]} considered to
some extent the asymptotic properties of the minimum error covariance. They
confine themselves to consider the special case when the observation noise

is regular (Q(k) > Q). Little or nc attention is paid to the case when the

B - - N i . ST, T
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observation noise is degenerate (Q(k) > 0) or simgalar (Q(k) =

).

The

treatment in section 3.6 is original, and Z=0nsider- all different cases

in a unifying manuner.
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CHAPTER 1V

OBSERVER  THEORY FCR CONTINUOUS TIME LINEAR SYSTEMS

4.1 Introduction

The problem of state estimation for discrete linear systems was con-
sidered in detail in Chapter III. 1In this chapter, we shall consider the
state estimaticn problem for continuous time linear dynamical systems,
Aside from the fact that state estimation is of prime iImportance in the
design of optimal control systems,the problem in itself is of great impor-
tance in the design of modern communication systens.

The structure of this chapter is as follows. 1In section 4.2, we con-
sider time-varying deterministic linear systems; the notion of 2 determin-
istic observer and estimator for a continuous linear system is defined and
we prove that classes of observers and estimators can be constructed if
the dynamics of the system are kmcwn. £Equivalent classes of observers and
the classes of minimal order observers are defined and some preliminary
results on parameterizing equivalent classes of observers are obtained. In
secticn 4.3, we extend the deterministic notions to stochastic systems
where we show that some classes of observers yield unbiased estimates. By
some physical considerations, we restrict the classes of observer-estimators
that shall be considered. We then determine the class of minimal order
observers that vield minimum variance estimates by formulating the problem
as finding the minimal function of a certain restricted solution set and
then using theorem 2.6.3. We then show that the class of minimal order
optimum observer~estimators yields the conditional mean estimates of the

stage. This reveals the true nature of the derived minimal order optimum

-93-
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observer-estimator. In section 4.4, the aotion of detectability of con-
tinuous linear time system is defined, and the asymptotic behavior of the
optimum estimazor is studied in terms of detectability and observability
of the system. 1n section 4.5, we have some general discussions on the
approaches, results and further applications. In section 4.6, detailed
literature connected with the development in this chapter is listed.
Conceptually, there is little difference between discrete and con-
tinuous time linear systems; therefore we would expect the results obtained
in this chapter will be quite similar to those of Chapter III. One marked
difference between the discrete and continuwus time cases is that for the
discrete time case, the cbservation statistic is sequential, and so each
bit of observation conveys finite amount of information in an accumulative

mannar; whereas in the continuous time case, we have only a priori infor-

mation before any observation is made, and when an observation is made at the

initial time we have a sudden increase of information within a very small

interval of time due to some noise-free observatior component. We would

expect this "jump" in information to be reflected in the initial condition

of the optimum observer~estimator,

4,2 Classes of Observers for Continuous Linear Systems

In this section, we shall consider a linear time-varying continuous

system g; described by

A()x(t) + B(t) u(t)

(state eq.) x(t)

(output eq.) y(t) = C(t)x(t)




PN,

where x(t) € R". We shall assume that ¢(t) is a differentiable time-

TR T oy b Y

varying nxm matrix of rank m, for all t ¢ [to,m] (n 2z m). For a fixed

te {to,w] the set of complementary matrices of order s for C(t) is denoted

PN N

by 2(C(t)sm,s,n) = {I(t) e M_: N(Z(t)) NN(C(E)) = 0 ¢ R"}. We note

that T(t) € 2(C(t);m,s,n) if and only if there exist matrices P(t),

3 . V(t) (of appropriate dimensions) such that

P(£)T(t) + v(t)C(t) = I . (4.2.1)

I

Definition 4.2.1: A linear time varying system of dimension s 2 n - n

62 z(t) = E(Dz(t) + D(®)y(e) + 6(0u(t) 5 2(r)) =z, (4.2.2)

is an s-order observer for the system §, if for some choices of Zs the

solution, z(t) of (4.2.2) eguals
: 2(t) = T(Ox(e) ;1 £t (4.2.3)

for some T(t) e Q(C(t);m,s,n), t > to. We shall also say that the observer

is described by T(t), t > to; and refer to such an observer by the symbol

* C
: 6.
, T
3
: Let T(t) be an sxn matrix which satisfies the differential equation
‘\t
t >t
(t>c)

T (6) = B0 - D(e)(AE) - LIOG(E) + B(E)C(E) 5 T(E) =T (4.2.4)

where L(t), E(t),‘ﬁ(t), 10 are some prescribed matrices of appropriate

, dimensions. If we construct a time varying system of dimension s 2 n ~ m:

64 2 (t) = F(t)z(t) + (D(t) + T(e)L(t))y(t) + T(t)B(t)ult) (4.2.5)

|
{
i
I
i
4
|
\ - - R B i
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tnen asing (3.2.s), we have

"y

(£3(T(e)x(2) - z(¥))

\oo?
“
(a4
”~~
1~
.
[
.
O
S

L @@ - 20 =

and Zf we cheoese T x(z } = z{= then T()xi{c) = 2(e), t » ¢t .
- s 5 = ‘ol “\ O) v _(‘)_i _( ): o
- cqq . . - c ...
Therefore G; will ba an s--order observer zoréS, ii by so=e appro-

oriate choices of L(r), £(z), D(r), I, the sclution, I(r) of (4.2.%) will
be in the set ol compiczentary matrices of order s for C(t), ¢ - O

By assuzption, C(t) s diiferentiable for all ¢ ¢ {t ,+]; thus there
exists 2z feaction I(r) - ..(C(r);=,s,n), © - T, such thaz i(ty is
differentiable.

s differentiadle

()

‘ 121
e

Theoren 4.2.2: Let I(g) z i(C(2);=,s,n), ¢t - T, and
L

in the interval (to,f). Then, there exists a class of s-créer obserrers

. = - . N EY - c
whics ave all described by I(t), t - g, tor the systen S‘.

-

Proof: Let 2(&),

Bl

(¢}, ¢t - tc, be matrices of appropriate dimension such

P(O)I(r) + ¥(r)c(r) = I ; t -t . (5.2.7)
- - - - o
Choose for t > ¢t
(o]
Be) = LAV + T(D¥(c) (4.2.8)

F(t) = B(0A()B(L) = T(e)P(r) (4.2.9)

J»—l

where

ALe) 2 A(r) - L(OC(E) (4.2.11)
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2né L(t) is an arditrary axm matrix. With these choices of B(r), #(c), and

T , we have the soclurion of (4.2.4)

2060 EEO S Fe@) 36,06

Ty F
T(e) = ¢ (t,:oli(tokg:(: ST)F

-t
. ° (4.2.12)

+ 2 - . . ..
where :I_.(x:,:o) and z_(t,t ) are fundacental matrices associated with F(t)
52 Zs =

znd A(r) respectively. Using (4.2.7) and (4.2.9) the integrand of (4.2.12}

becoes
- 1 é:z-(=,t)
e D EEAG + EE 50y e = (e,0E0) S—+
. ‘ N
b
(z,°) ) . T) + -Ef(t’:) T(:)z; (z.)ids = I(e)-2 (s t_ ) (c ): (r t)
Zpttet) TaoT e T 2ttt o 23tFor
(5.2.13)
Cozmbining (£.2.12) and (4.2.13)} we have
I(z) = 1{r) = ~(c(c);m,s,n) ’ t >t . (4.2.15%)

So an s-order observer ran be constructed by (4.2.5). we note that by

choosing different L(t) ¢ Mnm’ £ > to’ we obtain a class of observers de-

1 scribed by the same i(:), t>e. For a fixed i(t) ¢ z(C(t);m,s,n),
3 .. . . lc
2 t > to, and a fixed L(t) ¢ ﬁnm, t > to, we shall use the symbol GT (L) to

represent the observer which is specified by i(t) and L(t), and

EA e VR

G%c = {Glc’L)/L(t) £ W } the class of observers which is specified by i(t).
For each G~ (L) € GT , we shall associate with it an estlmatorg,} (L)

described by (Figure 4.1)

PR SO RL A IR LUt N SRS )

‘ 2(8) = (T(6) ALE)-L(E)C(ENB(O+T (DB (M2 (£)+(E(e) (ALE)-L(D)C(D)T(E)
i ic .

T &5 (L): +F ()T (e)+E ()L (£)y (D+ (£)B(E)u(t)

1 (6) = B(0)z(0)H () ()

%2 (4.2.15)
:{;

- - - - - . [, Ch e 4
k..
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If we know 35(::;), then by setting
)x(t ) (4.2.18)
we have from (4.2.6) and (4.2.16) that
w(t) = B(e)I(t)x(t) + V(e)C(t)x(t) = x(r) . (4.2.17)

But usually E(t;) is unknown, and so if we want to usea%c(L) as an esti-
mating device, we would restrict the initial condition of gﬁtg) to be in
the range space of.i(c;).

Let V() ¢ Mnm, t > to, be & fixed differentiable matrix., Associated

. - I3 - - ﬂc ’ - 3
with it is a set of matrix functions o, = iT(t) ¢ Moo € t0/_'§_(t:) is dif-

ferentiable on (t _,=) and P(£)T(r) + V(r)C(t) = I for some

. r ~C .
P(r) ¢ Mns’ te (£ ,®);s 2 n - m}. For a fixed T(t) ¢ J we can asscciate

. . lc .
with it a class of observers G,r and a class of estimators

S,l,c = {S;C(L)/L(t) € Mnm:" Therefore, for a fixed V(t), we can associate

C

v’ of different orders.

with it different classes of observers (’:‘;C. T(t) €3
For a fixed V(t), t > to suppose that (_I_n - V(£)C(t)) has rank
n-p, (pSm: then the class -PS(L) = {@1C(L)/T(t) 5 and T(t) € M
’ v T - v = n(n-p)’
has full rank, t ¢ (to,x)} is called the class of minimal order observers

associated with V(t) and parameterized by L(t). We can define the notion

of equivalent representation as in the discrete case (Definition 3.2.5).

For the rest of this chapter, V(t) is always assumed to be differentiable
ont ¢ (to,w].
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T ..W ”

Lentd =.o. 33 Tor 1 Dixed g, ot 4

S S A -

such that T~ (ic{y) nes ran-
N - - =
-

Sl . . . .
R 4 Lo’ let bT“{L}, +{t) = = be a given observer of order

g ey a2 XS

Cc

s - n - p. Then there exists a a - p order observer G%C(L), iﬁt) elfv such

T

tai

that G%C(L), G%C(L) are equivalent.

le . . . .
Proof: Let &, (L) be a given s-order observer; its associated estimator

T

S%C(,L) is described by

e e oy

(Iﬁt)(ﬁ(t)-L(t)g(t)g(t)+i(t)§(t))z(t)+(£(t)Qé(t)-g(t)g(t)

2 &) =
| gr (L) ; + rF 1o

T VWLV () v ()FI(e)B()ule) 5 z(c)eS = {T(c )x'2:R7:
S
. w(t) = P(e)z(e)+V(eiy(c)
3 (4.2.18)
5 with P(t), T(t) satisfying (4.2.1) and z(t) = K>, s 2 n - p. Since
A
o ln -~ V(£)C(t) has rank n - p, we may assume without loss of generality
-
f
- that P(t) is of rank n - p. P(t) is a time varying linear transformation
g

from R° ~ RN, We can break the transformastion into cwo steps: map R® to
: RYP by a tirz invariant transformation K, then from R%P to R" by an appro-
? priate time varying transformation P(t) i.e.,
A = P K . D =\ c M . 2.
3 P(t) = P()K H P(t) = Jn(n—p) K¢ 1(n-p)s (4.2.19)
é Let us construct an n - p order observer G%f(L) with (1) = K T(t) and

n

s the restricted observer's state initial condition.g(t:) e S = {“.l(tz)il: £ R
A%
§ First we see from (4.2.19) that
5 B(OI(0)+(6)E(E) = B(OK T(OH(DC(E) = BOT(O+(C() = I
F .
. (4.2.20)

AT

e

thus we conclude that T(t) € 5'3. Letfl%c(L) be the estimator associated

Pra Y AN g

with G%C(L). To prove the lemma, we need to verify that w(t) = w':) for

Ly paSasearrs o

(RGP 35
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1z
all possible u(t) and y(t) where @it) is the output of E"T (L). Let
~ ., +
z._(t:) = l(t:)g_ for some u € R" and pick _g(t:o) =K ;I_(to)g; then one can

easily show that by construction
2(t) = K z(t) ; t >t (4.2.21)
for all y(t) and u(t). Then we have

() = P()z(e)+¥(e)y(t) = B(t)K z(£)+V(e)y(t) = B(e)z(t)+¥(t)y(t) = wit) .
(4.2.22)
Conversely, if _'z_(t:) = _I_(_I(t:)_c_z_, pick _z_(c:) = I_(t:)g;then we have (4.2.21)

and (4.2.22) in the same manner, and the lemma is proved.

Theorem 4.2.4: Let V(t) ¢ Mnm’ t > to’ such that the rank of V(t) and

I - Vv(t)C(t) are p and n - p, respectively. For a fixed L(t) ¢ Mo the

class of observers @,},C(L), I(r) € T; are all equivalent.

Proof: Let P(t) € Mn(n—p)’ T(t) € M(n-—p)n such that
T(t)
P(e)T(t) + V(e)C(r) = [P(t) I ¥(O))}... |=1 (4.2.23)
. c(t) =n
Denote the column vectors of V(t) by y_i(t:), i=1, ..., m:
v(t) = :’ (t) 3 (¢) ... 3/ (t) . (4.2.24)
- P W

Since V(t) has rank p, {v_ . (t)}‘.)_ form an independent set, where ¢ _(*)
"Ut(l) i=1 t

is a permutation of 1, ..., m and !ot(j)’j > p are dependent on {Xct(i) (t) }Ii)=1'

Rearranging, if necessary, we may assume for a fixed t:

v(t) = [y_l(t) yz(t)] (4.2.25)
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3] 4 s\ 1
with _\_l(t) 5 an and of rank p, while

¥, (8) = ¥, (£)M(E) ;0 M(®) ¢ . (4.2.26)

M
p{=-p)

The matrix C(t) is also rearranged accordingly (il necessary); we may assume

c,
c(c) =1 V.. ; C.(t) = R C(e) ¢ M . (4.2.27)
Ez(t) 1 pn 4 (a-pjn
Since C(t) is of full rank, (4.2.23) implies that
A(8) = N(©)T(E) 3 N e M 4.2.28
€, (8) = N()Z(r) 3(®) = M0y (a-p) ( )
Using (4.2.23) to (4.2.28), we have for a fixed t¢:
[z(0
() D v (O ... =1 (4.2.29)
: [91“) + MON(OT)] T
Since [P(t) Xl(t)] € Mnn’ (4.2.29) implies that
= . 7 = -
I(t)P(t) ;n_p 3 Iy, (0) Q(n_p)p H

C, (0¥, (&) + M(e)N(e)T()Y, (r) = C, (0)¥, (t) = Lp . (4.2.30)
From (4.2.25), (4.2.26) and (4.2.30), we have

T(t)P(t) = 1 H T(e)v(t) = 0

(4.
“n-p

.31)

(3]

(n-p)m

We note that under the assumption on V(t}, (4.2.31) is true for all
t -t
)
From lemma 4.2.3, we see that to prove the theorem we need only to
. 1c pc .
prove that all observers GT (L) ¢ "y (L) are equivalent.

Let QZIL‘C(L) € 1r$C(L) be arbitrary, i = 1, 2. The associated estimators
i

are described by
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2. {t) = ("_f,i(t)(é(t)'L(t)E(t))_ffi(t)*"_fi(t)zi(t-’)zi(t)""(zi(-')L(C)*‘ii(t)i(t)

lc,,,.
e (L)

i I, (£) (A(£)-L(0)C(c)) ¥ ey (e)+T, (£)B(t)u(t)

+ + n
~) = : £+Y)3 . -Q = |- 3}
¥ (®) = B (£)2, {e)#¥(t)y(e) z, (e Jes; = {T (¢ alaer™)
(4.2.32)
. . € . . .
Without loss of generality, we may assume that the P_(t) ¢ Hn(n-p)

are of rank n - p. Then there exists a nonsingular matxrix X(t) ¢ H(n—p)(m-p)’

such that

B(6) = B, (DE(R) 5 By(e) = By (DK (D) (4.2.33)
and so we also have
K(D)I, (2) = I,(2) s L) = _1{1(1:)_12(:) . {4.2.34)
Let us define
Z(t) = K(e)z, (¢) . (4.2.35)
Using (4.2.32) to (4.2.35), we obtain the equation for z(t):
B(6) = (T, (0) (A -LIDCENRIDHDE, (0B, ()+R (DK (£))2(0)
(T, (LR ()T, (€)V(E)+T, (£) (ACE)-L(£)C(£))¥(E))y (t)
+lz(t)§(t)g(t) ;
2(e) = KT, (e = T, (¢

Ja £ S (4.2.36)

2

since gi(t), g&(t) satisfy (4.2.23), i = 1, 2; thus, by (4.2.31), (4.2.33)

and (4.2.34) we can easily show that

K(OT, (0P, (6) + ROK ™ (0) = T,(0)p,(®) (4.2.37)




=104~
KO (VD) = KO, (0¥ () (4.2.38)

Substituting (4.2.37), (4.2.38) into (4.2.36) and comparing with (4.2.32),

. . - ;
we see for any given g(co), we can pick an appropriate

[\

+ . S + .
ge(to) Sz(g(to) = 52(to)) such that

2(t) = 2z, (t) (4.2.39)

and so

w(t) gl(t)gl(t) + V(t)y(t) = _112(:)_15(t)3._1(t) + V(t)y(t)

R B T

P,(t)z,(t) + V(£dy(t) = w,(¢) . (4.2.40)

sy

Therefore 81C(L) is an equivalent representation of elc(L); similarly, we

I2 T,
can prove 8%°(L) is an equivalent representation of S%C(L) and the theorem
1 2

follows.

Note that the results are different from those in the discrete case.

We see that only in some special cases equivalent classes of observers

PITT T RTTIeToR

are parameterized by V(t) = Mnm and L(t) ¢ Mnm' Because of this difference,

}

3 our approach to the problem of dssigning "nice-behaved" observers and

: associated estimatorsfor the continuous system gi will be slightly different
Z from that used in the discrete case.

E

3 4.3 Optimum Class of Observers for Linear Stochastic Svstems

- Consider a stochastic system 8; described by: (Figure 4.2)

g

4 x(t) = A(E)x(t) + B(£)u(t) + £(t)

; ng (4.3.1)
- €, (0)x(t) + n(c)

- y(t) = ces

; £,(e)x(e)

a3 S TR L e O e

Y PEEN

RSz chnrs
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m
where x(t) ¢ B, u(t) € B, £(6) ¢ B, n(x) e R ©, y(t) ¢ &%, (m 2 m).

We assume thatlg(to), {e(e), t 2 to}’ {n(t), t 2 to? are independent

statistics. i(to) is a Gaussian random vector with mean X, and covariance

go; £(t), n(t), £ 2 t, are white Gaussian noises with properties

E rt t t ' t
: E;l 2 :.Z_(t)dt} =0 ; EM' 2 E(t)dt)(J 2 &£(t)dt) }: J 2 R(o)de ;5 ¢, > £y
: ! ‘1 ! f
t t t ! t
EH ﬂ(t)dt} =0 ; Eg([ 2 5 (eyae) [ 2 n(t)de) }: J 2 g(e)dt ty >t
3 't 'ty | ‘1

(4.3.2)

where R(t) 2 0, R(t) ¢ ¥ and Q(t) > 0, Q(t) ¢ M . The control u(t) is
= = = nn = m, m =

known function of time.

Let us denote the noisy observation by zl(t) and the noise-free obser-

vation by XQ(C)‘
7,0 = ¢ ()r() + ale) 3 ¥,(e) = L, (©)x(E) . (4.3.3)

Our objective is to find a "filter" whose output will be an unbiased

minimum mean square estimates of x(t). Since x(t) is a Ganssian random

%
%

process (see Chapter 2, section 2.3), we may restrict ourselves to consider

T GEITY

only linear filters [47]. Thus we may assume that the estimate of x(t) is

given by

t
gr u(t) = f H(t,t)y(t)dt + V(t)y(t) (4.3.4)

: t
;! °

SRS 55 e
.

where H(+,*) is an nxm matrix whose elements are differentiable in both
arguments. If we demand the system € to yield unbiased estimates of x(t),

then € can be realized by an s-order observer @éc(L)T and its associated

. - c e c . .
The superscript 2 is to indicate that system 8_ is considered.
P 2
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estimator G%C(L) (see section 4.5). For this reason, we may view obServer-
estimators as estimating devices.

Let us restrict ourselves only to some special classes of observers.
First we note that in the discrete analog, the optimum observers are
compatible with respect to the noise-free observatiorn. This is one in-
trinsic property of the optimum observers, and this property should be
preserved when we pass from the discrete to the continuous. Thus, we s*-all
only consider observers which are compat:ibla+ with respect to the neoise-
free observation zz(t). Since ll(t) contains wnite noise in fhe measure-
ment, therefore, in order to obtain reasonable astimate, we shall not %ass"
Xl(t) without filtering. These physical consideration allow us to consider
only those observer C%C(L) which are compatible and parameterized by

L(t) € % - arbitrary and V(t) of the form

v(e} = [0 . _\Lz(t)] V. (t) e M . (4.3.4)

. -2 n(m—ml)

All =zuch V(t) are of rank < m - m; 4 m,.

Theorem 4.3.1: Let V(t) be of the form (4.3.4); if there exists an observer

O%C(L),.z(t) € 3;, which is compatible, then rank V(t} = m, and rank

(L, - ¥(e)e(t)) = na - m,.

Proof: By iemma 4.2.3, we may assume that there exists @%C(L) £ nic(L)
which is compatible. Let E%C(L) be the associated estimator and w(t) the

resulting estimate. Using (4.3.4), we have

e(t) = w(t)-x(t) = P(t)z(t)+V(t)y(t)-x(t)

= P(£)z(e)+V, (£)C, () x(t)-x(t) = P{t) (2(t)-T(t)x(t)) . (4.3.5)

TCompatibility is defined as iu discrete case. See section 3.4.
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By compatibility we must have
_gz(t)_e_(t) = gz(c)_i:(t)(_z_(t) - I(t)x(e)) =0 a.s. (4.3.96)
ahus in particular if £(t) = 0, n(t) = 0,(4.3.6) implies that

g?(c)g_(c&e*-(c,t:)l(t:)g_ =9 3 ¢ R® arbitrary (4.3.7)

——y
-

T

(4]

2 +
where k(t) is gives by (4.2.9). Since GTC(I.) wsc(L), therefore '_r_(to) may

be assumed to be of full rank, and so (4.3.7) implies that
_gz(t)g_(t) =9 . (4.3.8)
Using (4.3.3), we have
Cy{0e(e) = £, (I, ()G, (D)xX(E) - C,(x(e) =0 a.s.  (4.3.9)

. s . n
x(t) can be an arbitrary vecior in R ; so we conclude that

Ez(t)ig(t) = l’“z (4.3.10)
and that rank za(t) :mz.
From (4.3.8), we have
Qz(t)g(t)'{(t) =0 ; rack P(e)T(t) < n - m, (4.3.11)
P{r), I(:) satisfy
P()T(e) + y_z(t)gz(t) =1 . (4.3.12)

Equations (4.3.12) and (4.3.10) impiy rank P(t)T(c) < o - raz. Together

wicth (4.3.11) we have

rank(;r = ¥(e)C(t)} = rank P(£)T(t) = n - m, . (6.3.13)
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3

(£x Ora i

By theorems %.2.% and %.3.1, we see that ail V(t) of the form (4.3.5)
Y M

-~

- . - 2¢ c
can be classified into two classes: either all GT (L), Ife) - 5, are all

R TN

2
E | uncozpatible or all G;C(L), I(t) ¢ 33 are all ccmpatible and equivalent.

i

Jde may call the former class of ¥{t) uncompatible and the latter class of

TH&

v(t) compatible. Thus,the classes of observers which we shall consider are

T

paraceterized by L(t) = Hnm and compatitle V(z) of the form (4.3.4).

Let V(t) be 2 fixed, differentiable matrix function of the form (4.3.5)

- which is compatible; and ler L{t) ¢ Hnu be arbitrary. From theorem %4.2.5,

. 2¢c
3 ali cbservers G (
3
. 2c
dynamics. Let GT (L)

- - € . - .
L), IT(t) ¢ dy, are equivalent and thus yield the sa2ze error

_Osc
v

(4}

. . 2c .
(L),its associated estimaror ET (L) is

described by:

P2 AT

[}

z(c) = (T(x) (é(i:)—}_(:)g(t))g_(:)-‘_i(t)g(t))g(t)é-(z(d (a(z)-L(c)C(%) )zz(t)

+1(£) ¥, (£)4T(2)L, (£))3, ()T (L)L, (0)y, (£)+1(e}B(elu(r)

RN

w(z) = P(£)z(t)+¥, ()x, (V)

ST
~~
I~
L)
W
L]
[
i
~’

3 where

] L(t) = [Ll(c) E ég(t)] ; Li(t) £ xnml » Lz(t) £ Hnm, (4.3.15)

=

ki

P(t) ¢ Mn satisfy (4.3.12) and, in aéiitinn, they

M
(n-2,)n

satisfy:

s

z(c)gz(c) =0

2 2 2

3 - T(t)P(c) = ;m . (4.3.16)
2

s . We can simplify the structure cf Eic(L) by using (4.3.15) and (4.3.16):

Qe

o DryY AT X
§ EVCUARITREPPUARSY IR
\
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T(EECRIRE) = T(e) (L, ()€, ()HL,(£)E,{0)IR(R) = T(EIL, (B)C, (DB (r)

(4.3.17)

5 Z(oL, (t) - T(IL(D)C(D)Y,(c) = -T(c)L, ()¢, ()Y, () (4.3.18)

Substituting (4.3.17), ¢4.3.18) inko (4.3.14), the structure of the estimator

£§C(L) is given by {(Figure 4.3)

z(2) = (1(:)5(:)2(:)-‘*_%_(t)ﬁ(c)—z(t)':l(t)_’;i(c)g(:)}_z_(t)-l-z(t)g(t)g(t)

2¢,. ..
& @: +T(OL, (O3, (DHIOAOF, (O (DY, (-T(DL, ()€, (DY, () y, ()
w(t) = g(t)g(t)ﬁzic));z(t)

(4.3.19)
”
By dexanding 8;C(L) to give unbiased estimates of x(t), we ser (sze also

section 4.3)

. = ' g, 2
b(to) T(to)go (5.3.20)
. where I(t ), P(t ® satisfy
3 =*"e’? =0
v (p ] - /
P(e )E(r ) + ¥,(c 3C,(c ) = 1 . {6.3.21)
g Using (4.3.1), (5.3.2), (4.3.16), (4.3.19) and (4.3.20), we have the
3
? dvnazics of the errcr precess, e(t) = w(t) - x(t), given by: (see Appendix C)
% &(c) = Qé(t)-gz(t)gz(t)-g(t)l(:)gl(t)gi(c))g(t)+(!2(L)Ez(t)—ln)i(t)
: 2(OI(DL, (£)-(0) (4.3.22)

i
(1]
-~
rt
o
.
L}

- _\:2(:('_)2._,&'0))(:_-:U - x(c))

ELLAACR OIS L

R U SSOAPREL S

§,(0) 2 6, (0) + G l0)ale) . (4.3.23)




YOLVNLLSH-UMANASEO ¥AGHO-TVRININ QASVIUNA NV J0 HUNLONULS HUL €°% *3714

HOLVNILSI-H3ANISA0 ¥IQHO-TVINININ Q3SVIBNN

B3 T I- (W + (IGWRFW L —

L_ g0z !
N g. ()G 1 |

—e| (DZAS()TDT - (1)PAG T + (WSRWTIT

O e S G —— — — — —1 — — — — —

(0d —

0 [ ) EH__ -
m“ .I.....Ilwllpllolvllﬂl”"""ﬁul":lu"“""u“i
R OLAS ~ L1 _
, 0=() AT | | |
NE-cmu:msH _ . M — - “

wiaZRw?s | WA “ (15 fo——( N Wt
S, I - - - i
5 {4125 el OVF (3 _
4 b |
(1) T 3
(OILSYHOOL1S) SOINYNAG LNV G




L aacion

Hei 2 I'\s‘ M

i)

PGz

-112-

Define

L (o 4 R(E)I(E)L, (r) ¢ Mnmz . (4.3.24)

The error covariance is given by (see chapter 2, section 2.3)

E(r) = [a(£)-¥, (£)C, (£)-L. (£)C, () JE(e)+E(t) [AC —xz(t)g'z(t)-il(t)gl(t)]'

+[_1“__\12(t)_c_2(:)]g(c)[;n—_\iz(t)gz(c)]'+j,_l(:)g(c)Li(t:)

I(e)) = (1 = V(e )C(e NI (I - ¥ (e )6, (e )"

-0

(4.3.25)

We note that the dynamics of the error covariance are dependent on Vz(t),

[y}

= x y * o J 7 T Ny —
t < [tc, ] and Ll(t), t [“o’ ]. Note that iﬂ(t) and Ll(t) are not arbi

trary but gz(t) has to satisfy (4.3.10) and Ll(t) is related to.kl(t),
which is an arbitrary matrix, by equation (4.3.24). To find the optimum
class of observers, we are to find a pair {g;(t), L:(t)}, which may be a
nonunique pair, with the above constraints which will give the "least”
nonnegative definite covariance matrix. Each such pair {g;(c), ;:(t)}

specifies an optimum class of observers. When {!2(:)’ Li(t)} ranges over
all constrained pairs, we generate the solution set, ét , of {4.3.25). The
o
minimization problem is equivalent to finding {zz(t), Li(t)} which will yield
the minimal function with respect to the solution set ﬁt
o
Theorem 4.3.2: Let Qz(tlg(t)gé(t) > 03 then there exists a unique con-~

N B et e
.

% s
straired pair {Xz(t), t e [to,w], LI(:), t e [to,m]} which yield the unique

* - * )
minimal function, [ (t), with respect to Br . gz(t), L](t) are given by

o
-1
2 C(t )(c, (t )z Ciic )) t =t
!;(t) - ’ o;Z ? 2 02" "o N o (4.3.26)
Loy + R @I -
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Lo =ogoato oot
where

4(t) égz(c)g(t)_qé(t) >0

* -
o (t) is the minimal function with respect to Bt and is given by
o

() = QORI OO, () (042 (0) AD-R(DC ()27

|

-2 (0) (€L (0, (04} (Q 7 (E)C, (£))Z ()+R(0)
—R(EE ()87 (6)C, (DR(E)

3
~

- - - -~ it y ~ -1 -
= (to) T o 5092(to)(£2(to)5n92(to)) -EZ(to)ﬁo

(4.3,27)

(4.3.28)

t)3C.{t))"

~
-2
4

(4.3.29)

Let ﬁt be the solution set of (4.3.25) when {!Z(t)’ ii(t)} ranges all

o]

%
possible pairs; I (t) is also the minimal function with respect te ﬁt H

thus £ {t) is the Riccati function (see definition 2.6.4).

o—

Proof: Let 9t be the solution set of (4.3.25) when {!z(t), Ll(t)} ranges

o
all possible pairs. Compare (4.3.25) and (2.6.1) with

% o . *
i-_ (t> — *_v(t,toyg (tO))

(L, (©) 1 V()] —~ ¥(e)

_Ql(t)
e ] - gl(c)
&,
Q) - 0
. e :... — g(t)
0 :0

[4]
~ D_(1r)
[ <c>] ?

[

(4.3.30)
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Since by assumption Qo(t)g(tlgé(t) > 0, then we have

a(t) 1 0 h Q{t) 1 0
TS 2 BTN LT 03} I VRS >0 (4.3.31)
0 .2 <, (t) ) 0 1 G, (OR(E)C,(E)

—

and so the unique minimal fonction is given by: (see (2.6.19) to (2.6.21))

£ 0 = A-RMOEO8 ™ OF, ()Z (D4 (£) A0-RE)E) (A (0)E, ()"

=L (6) Gy (087 ()8, (£)4€] ()7 (E)C, ()L (M+R(D-R(EICH(EIA T (£)C, (R()

3 = ' 1 -1
Ie) = E - ECy(e )(C,(c IE C(x )) T C,(t )X
(4.3.32)

L% *
and [Ll(t) . Xz(t)] is giver. by: (see 2.6.18)

-1
- * Q "(t) . 0
[LI(::) Igz(t)] = ;_*(c)[gi(t) Zgz(c)]+[g . _&(t)gé(t){ e Tl ]
. . . g :é-l(t)

. t>t
s o

7:': - . . -1
Vo) = 28 e 2 €y (e DE €y (e D)

(4.3.33)
To complete the prove of the theorem, we need only to show that !;(c)
% *
satisfies (4.3.10), and Ll(t) is related to some Ll(t) € “nm via (4.3.24).

1
From (4.3.32), we see that

gz(to)g (to) =0 . (4.3.34)
Using (4.3.32), (4.3.28) and (4.3.23) we have

%E (gz(c);*(c)) = gz(c):—”‘(c)[(ﬁ(c)-g_(c)_c_é(c)g'l(t)gz(c))'—@z(t)_@-1<t)§2’t>

+€1(0Q T (D)E, ()27 (0)] (4.3.35)
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Thus we conclude that

COE () = 0 (4.3.36)
Therefore we have
C(OVA(E) = [C.(0)E () (e) + (et (e) = 1 (4.3.37)
A AL A A | =tHri= m, e
Let
L® =fogmgte =o . (4.3.38)

We can easily see from (4.3.30) that

I(OROL) (6) = (I =Y, (0)C, (NI (g (g (6 = £ (0)g] (e ()

a,

Lo . (4.3.39)

%
Thus T (t), given by (4.3.31), is also the minimal function with respect to

8 .
t
o

We now have the structure of a class of minimal order optimum observers,

2c . * - % L%
OTC(L Y, T(t) ¢ 43*, V() =1[0 ..yz(t)]) and its associated estimators

2c, * c
€ (L), I(8) € Ty

o
z {t)

2 (TOAOROHEMRE-TOL] (€, (R() 2" (OHIOL] (O, (6)
*
ETC(L 3¢

-i-(g_(t)_!_\(t:)y_;(t)+i(t)_\£;(t)'l(t)LI(t)_C_l(r)!;(t)xz(t)

+T(t)B(t)u(t)

*
w (t)

B(0)z (6) + Yp(0)y, () § z'(c, = (¢ )x_ (4.3.40)

* *
with V,(t), L;(t> given by (4.3.32), (4.3.33) and (4.3.37); B(t). T(t)

satisfy
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IOV =0 5 GOR® =0 5 MORE) =1 ot

2 2 2 °

(4.3.41)
gz(c) is continuous t ¢ [to,m], thus we can chocse P.t) which is continuous

*
for all t ¢ [to,w]. From thecrem 4.3.2, !2(t) is discontinuous at t = to’

% %
and so from (4.3.41), T(t) is discontinuous at to. Since ¢ (t) & w (¢) - x(t)

is continuous at t = to’ we have

e (t ) = P(£) (2 (£ )-T(t )x(t )) = P (eD)-1(cx(t ))  (4.3.42)
R MR b T AL LA R LY. o’ = 0’0o 3.3,

\—

2 Sl AEi o i

*
and usiag (4.3.40) and the fact that z (to) = z(to)go, we have

I~
%

A s’aun.ﬂﬂ«"m,mw A

+ x4
() = I(e)dx - l(to)YQ(Lo)Xz(to) . (4.3.43)

%
We see that z (t) is discontinuous at t = t,» and consists of the a priori
guess (1(:0)50) and a correction term due to perfect observation
* 4 4 . o2c, % wC .
(l(tc)XQ(to)l2(co))' The detail structure of o (L), Trc) ¢ JV*’ is shown

in Figure 4.4. What we have obtained is a class of optimum mean square

estimators among a restricted class of estimators being considered. For

example, we have not considered the class of nonlinear estimators. Now to
prove the derived minimum order optimum observer-estimator is the truly
optimum estimator, we appeal to the projection theorem. It is clear that ‘X*(t)
is a linear functional of Xz(s), S € [co,t] and Xl(s), s € [to,t], we shall

%

. %
prove that the error process, g (t} 4 w (t) - x(t), satisfies the projection

equations

* %
E{e (t)x]'_(S)} =0 , sc¢ [to,t) ; Efe (t)Xé(t)} =0 ,

T R T

s ¢ [to,t] (4.3.44)

M LT WS et o v
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This implies that (see discrete analog and Appendix B) the optimum class
of observers will yield (a.s.) the conditional mean estimates of x(t), aad
. 2¢, * . c
thus reveals the truly optimum nature of E‘.T (L), T(t) € Kv.
*
By using e%c(L Y, T(t) € 3’5*, as an estimating device, the corre-

sponding error process will satisfy
Lk _ koo s * N * ()4 *
E(0) = (A(R)=Y, (), (£)-L; (£)C, (E))e ()+ (¥, (£)C,(e)=L DE(E)L, (E)n(E)

* %
e (x) = (I - ¥, (t)C,(t ) (x - x(t))
(4.3.45)
* * -
where _!z(t), Ll(t) are given by (4.3.32), (4.3.33) and (4.3.37).
Lemma 4.3.3: Let {_g*(t.), t 2 to} be a random process satisfying (4. 3. 45);

and x(t), t 2 to’ be described by (4.3.1) with u(t) =0, t 2 £y Then for

all t 2 t,s we have
Ele(x' (1)} = - £ (t) . (4.3.46)

Proof: At t = t,s we have from (4.3.44), (4.3.33) and (4.3.31) that

Ele" (e )x' (£ )} = {1 = IC3(t ) (Cy(e )Z Ch(t )7, (t )Hix x'-E x(t )x' (€ )}

*
-E(e) . (4.3.47)

Using (4.3.45) and (4.3.1) we btave

*
dEie (t)x'(t)}
dt

= (A0, (D), ()L ()¢, (D)E(e (e (8))
(W (£)C, (6)-L DR(E4EL ()5 (£) 1A' (£)

= (AO)-R(EXC, ()8 ()8, (D)F(e (Dx' (1))
-2 (0g] (097 (g (DEE" (0)x' (6))
-_Z_*(t)g(t)_f;l(t)_é_z(t)E{;e_*(t)g’(t)}+E{g*(t)5'(c)}A'(t)

4 (085 (087 (018, (ORE-RIOFR(ICH (D87 (E)C, (ER(E)
(4.3.48)
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Let us define

D(t) = L (t) + E{e’ (D' (0] . (4.3.49)
By (4.3.31), (4.3.47) and (4.3.48) we have

B(e) = (AD-R(OE, (L7 (IE, (£)D(E)-E (£) (€] (D)QHOIE, ()4E) ()L H(0IE, (1)) -

D(t)+D' (£)A(t)

( =
D.to) o

(4.3.50)

g&(t) is the unique minimal sequence of 8, and ¢ is well defined. (4.3.50)
o
implies

D(t) =0 ; t2t (4.3.51)

and (4.3.46) follows.

*
Theorem 4.3.4: Let e (t), t 2 €y be described by (4.3.45), and v(t),

t = to’ be given by (4.3.1) with u(t) = 0, t 2 to. Then for all t 2 to:

Bl (0y](9)) =0 , sele,t) ; Ble (D))} =0 , s e [c,,t]
(4.3.52)

Proof: By (4.3.45) and (4.3.1) and the properties of Gaussian white noise:

Ele" ()71 ()} = Ble"(0)x' ()] ()+ELe” (e)n' (5) )
= QA(t,S)[E{g*(S)z' (S)}_Q]'_(S)+Li(8)g(5)] s e {t ,t)
(4.3.53)

where

&) = AG®) - V(08 (6) - Ly ()¢, (©) (4.3.54)




R 9 3 rA RIS X

AR 1 M

it ieaita ¢

A2 £ s N AL TR 0 20 Sima A ety

NS atay:

TS

NORAMLE SN T AT

D 1A ¢ ¢ Jn 0 0 RS g

& LY.Ll LAY ALY S0

!

A N

TN

W

S T T e T

VIR

v 3 Y

PeMEALCE

f25ae s SNl EFE AR STy

-120-

a=d g, {c,s) is the {wndomental matrix associated wich A{r). Noew uw -3

lemma 4.3.3, (£.3.33) ==d (3.3.27) i=ris
* * *
Ele (E)y_i(SH = g_g(t,s) -= (S.‘££157 + ¥ (S)Ei(S)} =0 - £5.3.55}
Similarly for s ¢ [u:o,z], we have{ by using cocparibilicy)
B T = — . * - (S P ] - - * s =
5{s)} = 2z (r,8)Ede (6)=" (s2)c3is) = 3;(2,8)E (s)C,(s) =8 . (4.3.56)

The above thesren implies that for zero coatrol, the cptimem class of
o>s2rvers amd thair associatad estizators will ail gensrare (a.s.) the con-
éiricnal mean estizmaves of x{t). Tke rasulis 2iso holds i u(r) is a2
soazero but konown deterministic contzol function, bacause we can always
subrract its dererminisric centribution. The case where the controi is
generated via a special class of feedback lav will be considered in
chapter Y. XNore that we obtain the Kalman Filter as 2 special case when we
set gz(:) = 0 {5.3.29).

4.4 Asvoprotic Behavior of Estimators

iet us first consider the asymptctic bebavior of classes of observers
. . - s e es c
and associated estimators for a deterministic system § 1 Then, we shall
censider the asymptotic behavior of optimum classes of observers and

. . . ¢
associated estimator for the stochastic systen gz.

Definition 4.4.1: The system Si is detectable at t if there exists an ob-

server G%C(L), T(t) ¢ 3:’,, and its associated estimator G;C(L):

2(8) = (Z(£) (ACE)-L(£)C(ENR()HT(ER(£)2(E)+[T () (A(E)-L(t)C(£))V ()
le .y, .
& (L: +#L(OV(O)+T(OL(E) ()T (E)B(E)u(E)

w(t) = P(e)z(t)+(t)y(t) ; z(x) ¢ ST = {T(D)ajz ¢ R"}

(4.4.1)

ST i e 4 e e Sm S e e et o mens
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c . s
such that for all z2(i} € S_, w(t) -~ x(z), as £ ~ =. The system 81 is said

To de dzatectable if it ic dzrectadble at € (—=,x).

We shall szy 2 stochastic systex 2.; to be detectatle if irs deter<i-
aistic anraleg, S;, is dexactabie.

2 c 55 Tw 35 =B 3=
Theorem 4.4.2: The systen Sl is detect: 1. if and oaly if there exists

- 1 c . . = - - -
. 2n cbserver, Gi.c(!.), B, Which is mmiformly asyzproriczlly stable.
. . ic,.
Propf: The estinzticn error by esing 2ay observer, o i),

T(e) ¢ 'J;, and irs associated estimxaror is given by (see egeuaticn (4.3.3))

e(c) = P(e){zte) - Tle)x(r) £ B(t35(e,752) (5.6.2)

KRl SRR

where _i_(t,x;zo) satisfies (see equatricn (4.2.6) arnd theorex 5£.2.2)

AR 2 KN

. 2(6,732)) = [246) (A()-L()C(2))R()T(E)R(2) D2iE, 732 )

‘e

_i_(t,t;_r-_:o) =% ¢ S? . (4.4.3)

AT AT T

Let us first assume that there exists some L(t) € ¥ and V(t) € Hnm

such that an cbserver S;C(L), T(t) ¢ 33, ig uniformly asymptotically

W

stable; then for all T and go €S, 2_(:,1;2.0) +0as t > From (4.5.2)
we conclude that 8; ic detectable. Conversely, if -.ge system 8; is de-
tectable, then there exists an observer, G,]I'.c(f_), T(t) € ‘1‘3, such that the

output of its associated estimztor will give exact asymptotic estimates

independent of when we initiate the observer state; i.e., for all 1, and
zZ €8
, = T

. e(t) = g(t)_'i_(t:,t;go} + 0 as t +» (4.4.4)

where _g_(t,r;_i_o) is given by (4.4.3). We may assume P(t) to be of full

rank; thus (4.4.4) implies that the system (4.4.3) is uniformly asymptctically

e
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stable, and so5 Tthe observer e,i_c(i), () € 35, is tniformly asyoptotically
stable.

A lipear systeax
x(t) = a{t)x(c) (4.4.5)

is said o be exponantially stabie if there exicrs a > 0 such that

12 2
-, |-zl

e (4.5.6)

Ze,0fi = oy

Ha,

where o (t,7) is the fundamental =2trix of A(t). We also say that the

)
=
zatrix A(t) is expuneatially stable. Theoren 4.4.2 1elites detectability
to the structure of the observers. Since exponentially stable implies

uniforn asyoptotic stability and vise versa {4§], the above lemma implies

. c . . . -
that tne system 81 is detectable if and only if there exists an observer

lc,
T ‘

case) by using t’,,ic(!.), I(t) = 3’3 ,has the bound

6. (L), T(t) ¢ 3’3, such that the error of estimates (in the noise free

-a, | -t |

”e(t)” < uie 4.4.7)

where t is the initial time. We may call such an estimator 6,31'.C(L) an

exponential estimator. [49]

Theorem 4.4.3: I1f there exists V. (t) ¢ M of rank m, and L. (t) ¢ M
-2 nm2 2 =1 nrnl

such that (A(t) - 12(:)g2(t) - L_l(t)_g_l(t)) is exponentially stable, then

the equivalent classes of observers @%c(f.), T(t) € 3‘3, where

v(t) = [0 : Xz(t:)] and L(r) = [_f_._l(t:) . Lz(t:)], Lz(t) arbitrary, are all
1c,.

uniformly asymptotically stable and so g,}c(L), T(t) ¢ 8;, will yield ex~

ponentially consistent estimates.




-

IRRAD P

T

N

HYZLAY Seomroi > Anrenmt s tumma Y aas 15 LU S oy ras o

T A T T

L3

M IRy

U AT ey O RS

A Ny e AR

=

Y O 1 e T e

e~ v~

o AR b B

R

-123~

Proof: Ler us consider tie class of V(c) of the form (4.3.4) witn rank

[[]4]

¥,(t) = o,. The error, e(z) £ wit) - x{z), of esticares by using V(t}

within this class is given by (see zlso (4.3.22))
&) = (a(e) - v, (v)C, (v) - _f;l(t)gl(t))g_(t) B (4.5.8)

; i i Y (e} £ L. (g) ¢
8y assuzption, there exists lz(t € an’ of raak o, and _!___l( ) ‘!n:,’ such

rhat (A() - ¥, ()€, () ~ L (60, () is exponentially stable, thus the
theorexz follows fron (4.4.8) and rheoren 4.4.2.

Theorex $.4.3 gives vs a sufficiency test for detectability; it also
indicates how we can construct an exponential estimator.

For the stochastic systen S:f, the class of minimal order cptimun ob-

servers and their a.socizated estimators are given by (4.3.39) and (4.3.42);

*
the optimum error covariance £ (t) is given by (4.3.29). We shall now

investigate the asymptotic behavior of the class of minimal order optimum

*
estimaters via £ (t).
*
Theorem 4.4.4: The matrix function £ (t) will remain bounded for all

My,

nml

m

t e [to,m] if and only if there exists _\Lz(t) € Hnmz and I—‘l(t)
such that {A(t) - _\Lz(t)gz(t) - Ll(t)gl(t)) is exponentially stable.

Proof: This follows immediately frem theorem 4.3.2. The reader is re-

ferred to the proof in the discrete analog for the detailed argument. Using

*
theorem 4.4.2 and 4.4.3, we see that @%c(L ), T(e) € 3’3*, is uniformly
asymptotically stable.

Corollary 4.4.5: TIf (A(t),C(t)) is uniformly completely observable, i.e.,

there exists © > v > 0 such that

t+t

M(1) =J _QA(O,HT)Q_' (o)g_(o)_QA(o,tﬂ)dg ; te [to,w] (4.4.9)
t
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Itas rank n, then tzere exists L(t) « }in: such thar (A(t) - L(e)C(t)) is

exponeatizlly stable.

Proof: Apply rheoren 4.4.5 to the spacial case vhenr =, = 0; i.e., 3ll

~2

observation chaanels are correpted by waite CGaussian noise. The cptinoun
error covariance will rermain bounded if and only if there exists L(t) ¢ ¥
such that (i(z) - L(z)C(t)) is exponentially stable. If (A(r),C(¥)) is
uniforsly completely observable, the oprinum error covariance wili remain
bounded for 2ll & ¢ {t: =], (501 and sn the corollary follows.

Let us consider the time invariant case where A, gl, and 9_2
are constant and bounded matrices.

Lemaa §.4.6: 1If the pair (4,C) is observabie, then the pair
AT

is also observatle.

Proof: Construct the matrix

. "T - Cl
Mz ,7) = | _g‘;(o,r)[gi I_C_é} Iy Q_A(c,t)do
‘t : C.,
o -
T T d¢é, (o,7)C' dc.¢, (o,7)
= ‘ o) (o,')c 15 (c,t)dc - A Io 2 . =2 i;‘o do .
‘t
o

(4.4.10)

n ~
Let x ¢ R such that Z‘_'ﬂ(toﬂ)i = 07 then from (4.4.10) we have for

g E [to,r]:
— . = m
glg_A(c,r)i = sz ; _QZQA(O,x)ﬁ yeR (4.4.11)
where y isaconstant vector. Suppose that x # 0¢ let x, = QA(to,r)_}_c_: then
X, # 05 let x, = 2, (t,0)x, T > t; >t , also x, # 0. Since A is constant,
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we tave froa (4£.4.11) that

= )x = ;7 o ¢ 27 4.4,
_Z_A(J,to)io CFA( t)}_ z ’ [Co ] ( 4 12)
Z—A(G t )~< = (c,_ )6 (t.l,;) z_ga(-:: + ::1 - tl)_«‘:A(:l,-:)E
= CLéA(a + L, =~ to,r)_ng =y ; ¢ [to,: - g + tol .

{4.4.13)

Thus X2 %y are indistinguishable by observing the output in the nonzero
interval [to,: -t tO]. This contradicts the assumption that {(A,C) is
:bservable.

*
Lerma 4.4.7: Let £ = 0; the solution of (4.3.29), denoted by £ (t;0) will

d

*
reach a steady state I which satisfies

-1 * * -1 * -1

= - 1 SA | B - ¢
0= (R CETCMI + I (AR CIATICA - I Ag el e E
— 1 —l . = ' > Z
+RRCACR 3 A=CRCI >0 (4.4.14)

if and only if there exists !2(‘5)’ L.

-

(t) such that (A - ¥,(0¢, - L, (£)g,))
is exponentially stable.

*
Proof: Let us consider I (t;0) as a minimal function with respect to the

*

solution set Bt . With the assumption that zo = 0, we have I (to;_g) =
o

from (4.3.25), and so

% t * * ~ ~%
L (t50) = j Q_(t,'r){(ln-_\_l_z(‘r)_qz)_li(_l_n-y_z(r)gz)'+I_,_l(r)g Ll'(r)}g'(t,T)dt

t
(o]

(4.4.15)

X, s <%
vhere $(t,7) is the fundameatal matrix associated with (A - _\_’2(1:)_92 - L;(t)gl),

% ~3
and _\_7_2(1:), _Iil(t:) are given by
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p A

*\..s-* -0)C! 4 eyal . “ - 4£.4.16
lz(tl =& (ti_)g.g : .R__.z):‘ r TS, (4.4.16)
* = Xee.me oL - .
L) = (e 9 5 >, - (4.4.17)

S % - -%
Let V. (t) = !2(5 + o), L;(t) =‘§1(t + ¢), and g?(t,r) be the fundamental

matrix associated with (A - y;(t)gz - L;(t)gi). Cilearly we have
E(e,7) =8t +o,T+03) . (4.4.18)

let ;f(:;g), t2 t, be the solution of (4.3.25) with §?(to;g) = 0, thus

< * . . .
I°(r;0) € 8_ . Since £ (t) is the minimal function with respect to Bt » we
o o

Fe 220 3 tze, . (4.4.19)

Also we have from (4.4.18) and the definition of yg(t), Lg(t) that:

-~ t_o -~ -~
Flem0s0) = | (-0, D (I VI(DEIR - (IEHS (1 1] (1)1e7 " (em0, 1) e

‘t
o
rt * * <% %
S| 26N -V, (DEHRA -V, (D)L (1NQ Ly (Ve (6,70 dy
e,
*
= (t) . (4.4.20)

Combining (4.4.19) and (4.4.20) we have
o} *
Z (t;0) 227 (t - 030 2L (t - 050 . (4.4.21)

The lemma follows from theorem 4.4.4 and the monotone nondecreasing nature
*
of Z (t;0) as t increases (4.4.21).

Thecrem 4.4.8: For all go > 0, the solution of {4.3.29), denoted by

x *
Z (t;;o) will reach a steady state £ which satisfies (4.4.14) if and only
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there exists V,(t), L, (t) such that (& - _\_I_Z(t)i:_z - L, (1)C)) is exponentially
stable.

Proof: From (4.3.29) and (4.3.25) we have

L X 0 e e eyl s
Feidy) - £ i = L, - LGGLE GE, 20 - (b2
There fore, from (2.6.21) we deduce that
2 ) Y30, e [t ] (4.4.23)
L 2l = sV) o’ . 4.
%
Using the minimal property of ¥ (t;go), we have
0€ I (3L ) - £ (630) € (t,t )E (€ 32 )e' (£,t) (4.4.26)
e = LT gl Mg =gl Y2 e *Te

where ¢(t,t ) is the fundamental matrix associated with (a - g;(t)g_z - ;1(t)§_l)
and _!;(t), _I_:_i(t) are given by (4.4.16) and (4.4.17). _g_(t,to) is exponen-
tially stable if and only if there exists y_z(t), __f_._l(t) such that
(a - 12(!:)_(12 - 1:_1(1:)9_1) is exponentially stable. Using lemma 4.4.7, we
obtain the theorem easily.
From lemma 4.4.6, and coroliary 4.4.5, we see that observability of
the pair (A,C) is sufficient tec assure that E*(t;_i_o) - _Z_* satisfying
(4.4.14) where 50 > 0 is arbitrary.

4.5 General Discussion

In this chapter, we considered the estimaticn of deterministic and
stochastic systems using the observer approach.

In the deterministic case, sufficient conditions for existence of
exponential estimator have been derived; such estimators can be realized
by an observer @,},C(L), T(t) ¢ 8’3, which is asymptotically stable, and its

associated estimator &%,C .
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In the stochastic case, the minimal order optimum observer and its
estimator are described in detail in Figure 4.4. The optimum error co-~
variance, Ef(t), is given by (4.3.29). Asymptotic behavior of the minimal
order optimum observer is investigated via the optimum error covariance
E%(t). Necessary and sufficient condition for g%(t) to be uniformly
bounded nave be2en established. The condition is related closely to the
structural property of the system 8; under consideration.

In the following, we shall discuss different points which are rele-
vant to the whole development in this chapter.

(A) Unbiased Estimates and Observer-Estimator Structure

Let S; be a stochastic system described by (4.3.1) with u(t) = 0.
Let an unbiased estimator £ be given by
t
w(t) = J H(t,)y(r)dr + V(t)y(t) (4.5.1)
t

where H(*,*) is an nxm matrix whose elements are differentiable in bozh

arguments. Since E{g(t)} = E{E(t)}, from (4.3.1) and (4.5.1) we have
_r,co)godr + X(t)Q_(t:)_(_p_A(t,to)_g_{o = gA(t,to);go (4.5.2)

where EA(t,T) is the fundamental matrix associated with A(t). The structure
of the estimator should be independent of the mean of i(to), X thus

(4.5.2) implies

t

j H(t,7)C(0)g, (r,t ddt + V(E)C(D)g, (t,¢t ) = $,(est ) . (4.5.3)
L
o .

Differentiate both sides of (4.5.3) in respect to t.

t
i, 0ce)+ HILD o), (6,0 (OCOHOEEH (E)C(EIAE) = AE)
‘t
© (4.5.4)
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Multiplying both sides of (4.%.4) by w(t) and taking expectations

t
o]

+(§_(t,t),q(t)+_\1(t)_g(t)+1(t)§(t)+_»;(z)g(t)—g(t))g(t)ls{x(f)}=Q
(4.5.5) is satisfied if H(t,T) and ¥{t) satisfy
t
[ (sormce,0 + ML)y (0ydr = - GUD3(e)
Jto
where y(t) is a m~vector valued function of t; and

G(t) = H(t,t)Clt) + V(£)C(r) + V(L)C(t) + V(£IC(£)A(L) - A(R)

t
Let us denote yi(t) = [ H(t,1)y(t)dt; we have

t
o
t 3H{(t,T)
ﬁi(t) = H(t,t)y(t) + J ——524——‘x(1)dr
t
0

H(t,t)y(t) - g(t)_vzl(t) - G(t)V(t)y(t)
The unbiased estimator is realized by
w(t) = - G(t)w, (£) + (H(c,b) - G(E)V(e))y(t)

w(t) = w, (£) + V(e)y(e)

t . o e
J (e, ) COH () COH ) EOH (D) D AE)-AE)H(E, 0+ EEETEly (1) }ar

(4.5.5)

(4.5.6)

(4.5.7)

(4.5.8)

(4.5.9)

By some transformation of coordinates, the unbiased estimator £ can be

realized by

2(t) = F(t)z(t) + D(t)y(t)

[

w(t) = R(e)z(e) + V(t)y(t)

(4.5.10)
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Sizce 2" an unbizsed estimator, we have at t = t,
= ¢ )=(z v . -S5.11
X x o)_( o) + _\_(tc)_g(tc)gn_o (5.5.11)

i€ g(:o} z .‘.(g_(:a) 33,5,0) aad P{t ) is such that

W

e
L Y - ¥ - YT - - - -y - - -~ = 2 =
2{=) -’-—:“t"e)i‘to'foé;, _._F(t,.)gi.)g(.)_,ﬁ( a ,..o);.od. .y_(c)g(t)._A(t,t:c)__u
)
= i:\(z'tol‘:o - (£.5.13)

t=e strecture o©f the estizator is reguired te de independent of -3 there-

fore (£.5.13) icpliss

2(2)3(r) + ¥()c(e) = L (4.5.14)
=here I(z) is given by
-t
Tle) = - _(z T . =+ W L YDL-YCL-Y~ (- . 55
T0e) = i (z.r )il )z, (£ .1) L G OREOEOL e L (45.15)
()

¥ lozpariag with (4.2.%4) and theorea 4.2.2, such an estimator can be

. . . ic - ~C
realizeé dr an observer o {Ly, I(t) = 3

v and its associated estimator

(L), where L(t) = M__ is arbitra-y.

Thus we see that the ccncept of an observer is in some sense eguiva-
lent to the concept of unbiased estimator. When the a priori distribution
of E(Cc) is xnown, the ninirmal order optimum observer-filter gives un~

bizsed minizun wean square estimates;whereas if the a priori distribution
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of i(to) is unknown, the minimal order optimum observer-filter will be
an asymptotically unbiased ninimum mean square estimator.

(B) Estimation Yor Linear System

The observer theorem introduced in this chapter generalizes an*

unifies estimation theery for deterministic and stochastic systems. For
both deterministic and stochastic cases, the structure of the estimators

are the same. In the deterministic case, we are to find certain parameters,
gz(t), Li(t)’ s0 as to obtain exponentially consistent estimates, whereas in
the stochastic case, the cptimum choice of yz(t) and ii(t) is specified by
the noise statistical law and tka detailed structure of the system. Thus

we see that in the deterministic case, qualitative theory should be used

in designing well-behaved observer—estimator;[égl whereas in the stochastic
case, optimization technique can be applied to derive the class of minimum

order optimuam observer-estimator.

(C) Kalman Filtering Technique

We can also s-lve the stochastic problem in secticn 4.3 by using the
Kalwan Filtering Approach.T Let us corsider the systenxsg wath u(t) = 0.

Let T(z) € Mn ) such that

(n—m1

() )
ggié)J

is of full rank. Define

3{_1(1:) = T(t)x(t) . (4.5.16)

TThis approach was suggested by I. B. Rhodes.
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Then we have

x(t) = B(£)x, (£) + ¥, (t)y,(¢) (4.5.17)

where

T(t) -1

[P(%) g :.12(:)] = (4.5.18)

g, ()
We have the equation for El(t) and y, (t)
%) (6) = (E(E)+T(0)A(E))x(E)HI(£)ECE)

= EE@R(OHT(DAP()R, (O)HE(D)Y, (DT, (£))-

xz(t)ﬂ‘_(t)g(t)
_}Ll(t)-gl(t:)y_z(t)y_z(t) = El((‘.)g(t)_}il(t)'*ﬂ(t) (4.5.19)

Since z,(t) can be observed exactly, we can assume it is known. Now
apply a Kalman filter to the system (4.5.19): the best mean square esti-~

mate of §l(t) is given by

i (6) = (EOREOHADPO-E(OR (0)E (08 (0)E, (DR(E)Z, (©)

IOV, ()T ADY, (£))y, (1)

. -1 (4.5.20)
+_Z_(t)g'(t)gl(t)9_ (t)(xl(t)—gl(t)y_z(t)xz(t))
&, (¢ ) = I(t))x
and -(t) satisfies
£(6) = (FOROHT(A(DR(EE(E)+E(E) (T(E)R(EI+T(E)ALE)B(E)) "
+1(t)3_(t)z'(t)-i(t)_fi'(t)gi(t)gfl(t)gl(t)g(c)i(c) (4.5.21)
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The estimate of x(t) is givea by
x(t) = g(:)gi(c) + yz(t)yg(t) . (4.5.22)
The estimation error covariance matrix is given by
Z(t) = P(v)E(t)P' (L) . (4.5.23)

Therefore

£(6) = BOZ(0)R (+R(D)E (DR’ ()4R(D)E(D)E’ (1)

(P(£)+R (£)T(£)P(£)+R(£)T(E)A(E)E() ()R ()

+

P()E(e) (B(t)+R()+T(£)P{L)+R(£)T(L)A(L)R())"

+ P()T(£)R(E)T' (£)B' (£)-B(t)E(£)R" (t).c_i(t>9'1<t)£1(r)2<=>i(c).11' (t)

Q&(c)fyz(t)éz(t))gﬁt)f;(t)(é(t)ﬁyz(tléz(c))'
+ (Ln—yz(t)gz(t)lg(t>(Lnfyz(t)gz(r))'7§(c)gi(t)gfl(t)gl(tlg(t) .
(4.5.24)

The initizl condition is
= {1 - - ! . 5.
I(t) = {1 - ¥, ()€, (e NI (T - ¥,(c )G, (c ) (4.5.25)
We note that the error covariance depends on Xz(t) which must satisfy

S, (O, (8) = I . (4.5.26)

n
<
To find the minimum mean square estimates, we have the optimization problem

of choosing !z(t) satisfying (4.5.26) and yielding the "least" nonnegative

definite L{t). Note that (4.5.24), (4.5.25) is the same as (4.3.25) with

L = zmgjma e . (4.5.27)
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One can easily show that the optimum estimator derived by using the
Kalman filtering approach is a minimal order optimum observer-estimator.
Before comparing the merits of Kalman filtering approach and observer-
estimator approach as developed in this chapter, the author would like to
point out the falacy of an initiative conception by using the Kaiman fil-
tering approach. This is best explained but giving a specific examnle.

Consider a linear time invariant system descrited by

%, (t) 0 1 | %, (t) £ (t)
1 = 1 + 11 ) (4.5.28)
x,(0) \:al —a,]{ X, (t) £,(t)

The observations are

y;(€) = [0 1}x(t) + n(t) (4.5.29)

y,(t) = [1 0]x(¢) . (4.5.30)

4

The noise statistical laws are assumed to be known:

E{f‘t al=0 z{({‘t _E_(f)dt)({t _g_(c)dcr)‘} 0 s
‘0 ‘o ‘0 0 T,k
i ‘ \ 3
E{jo n(x)dt} = 0 ; E{(Jo n(t)dz; } = qt . (4.5.32)

Assume that the estimation process has started at -=, and our objective .—

"

now is to find the conditicnal mean estimate of the state. One "intuitive"
argument using the Kalman filtering approach will be as follows. From
(4.5.30), we see that we have exact observation in xl(t), therefore we can

assume xl(t) is known. From (4.5.28) and (4.5.29), we have
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xz(t) = - alxl(t) - azxz(r) + gz(t) (4.5.33)
yl(t) = xz(t) + nit) . (4.5.35)

Since the system is linear and the noises are Gaussian, thus to find the
unbiased mean square estinmate of xz(t), we may apply Kalman fiiter to

(4.5.33) and (4.5.34). The error variance, e, in the steady state will

[50]

satisfy the algebraic equation
2 ;) = as
e” + 2a.qe ~r,q =0 . {6.5.35)
1 2
Therefore the error variance is equal to
e = /ézqz + r.q - aq >0 . (4.5.36)
1 2 1

One may make the conclusion that the Kalman filter for (4.5.33) and (4.5.34)
will give us the unbiased minimum least square estimates, and the minimum
mean square error is given by (4.5.36). Unfortunately, this conclusion is
in general false; the reason for this is that the Kalman filter for (4.5.33)

and (4.5.34) give us the estimate
%, (t) = E{xz(t)!F(yl(t);r e [t ,t))) (4.5.37)
whereas the estimate we are looking for is
%,(t) = E{xz(t)lF(yz(T);r e [t ,tl,y (s)ss e [t ,t))} (4.5.38)
and in genersl we have the inclusion of o-algebra
F(y, (031 ¢ [t ,0)) C Fy, ()3T ¢ (e, tlhy (s)ss € [t ,t)) (4.5.39)

To proceed with the example, let us define
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xlk(t) = [~k 1]x(t) 4.5.40)

where k is an arbitrary number. Using (4.5.30) and (4.5.40), we have

l’O 1
x(t) = Ll] xlk(t) + [k] v, . (4.5.41)

Taking the derivative of (4.5.40) and using {4.5.28), we have

ﬁlk(t) -(k + az)xz(t) - alxl(t) + gz(t - k&l(t)

-(k + az)xlk(t) - (kk + az) + al)yz(t) + Ez(t) - kgl(t) . (4.5.42)

The observation (4.5.29) becomes
yl(t) = xlk(t) + kyz(t) + n(t) . (4.5.43)

Define

ylk(t) = yl(t) - kyz(t) = xlk(t) + n(t) . (4.5.44)

Since yz(s), s € [to,t], is known at t, by applying the Kalman filter to

(4.5.42) and (4.5.44), we have the steady state error v.riance, e , for

k’

the unbiased least square estimate of xlk(t) setisfying the algebraic

equation
e2 + 2(k + a,)qe, - q(kzr +r,) =0 (4.5.45)
k 2 k 1 2 o
and so
e, = /(k + a,)%q% + q(k’r, + r.) - (k + a,)q > 0 (4.5.46)
k 27 @ TR I T, 2 : e

To find the corresponding estimate in x, we have
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;o ®(t) = @ +{ Iy (4.5.47)
- 1 K [_k 2

where ilk(t) is the estimate given by the Kalman filter for (4.5.4Z) and

yaizg
e

1] FioATS

REHEE

getil'an

2 (4.5.44). The corresponding error variarnce for xz(t) is

EL(ry ()5, (£))2) = B Gy, (8=, (E)Hey (E)-ky, (02} = B Gy, (01, (£0) %

T

=2 . (4.5.48)

P Ll i/ e

Clearly ey # e for almost all k ranging from ~-» to ». One may then attempt
SR to find the optimum k which give us the smallest e - This has easily been
carried out by using differential calculus. The optimum value for k° was

found to be:

2 2

ajq ar a,q

: K© = At (4.5.49)
. (@ + 1)) 147 9T n

0h i3

A

Substituting (4.5.49) into (4.5.46), we have the corresponding error:

(q + r )r q
0 A ) 1727 =
e Ee 0 q g 3 J\qa ) - qa, (4.5.50)

(i L\ 2o tows

T
eem s N .

and clearly we have the strict inequality (rl >0, q>0)

; 0 p (o) PR
: e < (qaz) + /" 1,9 - qa, < /(qaz) + ryq - qa, =e . (4.5.51)
1

pre—

The inequality (4.5.51) indicates that by applying Kalman filter to (4.5.33)

et g

, and (4.5.34), we do not obtain the best mean square unbiased estimate. We

2

fixed a priori). We may not conclude that the error e’ is the minimum

¢
; note that the optimum value of k depends on L5 Tys and q (assume a, is
‘ .

arror variance because we only consider a restricted class of transformation
. o . . .
in x (4.5.40). The only way to check whether e~ is the minimum error variance

is to appcalto the projection equation, or equivalently, the Weiner-Hopf equation

Miredisdet

o}

jmn—,-vu iy o)
(B
|
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Tharefore, we see that conceptually, the Kalman filtering approach
is by no means simpler than the observer approach developed in this chapter;
because one may find it hard to visualize physically why one transformation
of the state is better than the other before the application of a Kalman
filter, besides, one may reach false conclusions if one is not careful
(see example). Note that one approach is as easy as the other: both in-
volve a deterministic optimization problem, and both need tc verify that
the derived solution satisfies the projection equation befcre we can con-
clude the truly optimum nature of the obtained estimate. In terms of
derivation, the Kalman filtering approach is comparatively simpler; but
personally, the author thinks that the class of asymptotic unbiased esti-
mator is a more basic conceptual framework to many estimation problems. .
The observer approach is based precisely on this conception. One dis-
tinguishing advantage of using the observer theory apprcach is that it
reveals the detail structural properties of the optimum estimator. This
allows us to investigate in detail the asymptotic behavior cf the optimum

estimator in terms of some intrinsic functional behavior of the system

(section 4.4).

(D) Detectability and Observability

We note that observability is a stronger condition than detectability.,
In section 4.4, we have shown that detectability is a necessary condition
for the minimum error covariance, g%(c), to be uniformly bounded for all
t - co. In the time invariant case, observability is sufficient condition .
for ;*(t) to be uniformly bounded and for the existence of a steady state

%
value of Z (t) as t - «.
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a proof is not available yet, it ceems very likely that

%
detectability is also sufficient to assure Z (t) to be uniformly bcunded

for all ¢ 2 ¢ .
o

(E) Estimation in the Presence of Time-Correlated Noise

where n(t) is a Gaussian Markov process which can be realized by:

' . . c .
Let us consider the stochastic system 83 described by

w0

x{t)

y(£)

A(t)x(t) + B(t)u(r) + £(z)

C(o)x(t) + n(e)

a(t) = A()n(e) + x(t)

x(t) ¢ g

; yit) ¢ &

(4.3.32)
(4.5.53)

E(to)’ gﬁto), {g(e), t 2 to}, {y(t), t 2 to} are independent statistics.

The statistical laws are given by

x(e ) v Gz
e ) v Gl

ty
f E(t)ar v GO,

£

k)
[ n(t)de ~ GO,

5

Define the augmented vectors

and the augmented matrices

°)

b _;_}(

(o]
, L)

[
t

1

K
r

R(t)dt)

R (t)dt
R

)

(4.5.

w
ey
~—

(4.5.55)
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-
A(t) 0 0 B(t)

B o) = e(e) D31 5 BME) =

{¢r

.
L s 00 Y

_é LA

We have the eguations for the augmented system

:
.
4
i .a a a a a
5 X(t) = AT(e)x (r) + B (v)u(r) + £7(¢)
‘3 ' C. ” -
3 Sa. ] ] (4.5.57)
3 y(e) = ¢ (t)x"(t)
3
; , c .
¢ We can apply the derived results to the system Sa. Note that the minimal
-
( order optimum observer-estimator has dimension n. In the zpecial case
%,
e ¢ when C is a constant matrix, we can easily verify that the resulis obtained
g agree with those obtained by Bucy [52]. 1In the general case, the results
ﬂ agree with Bryson and Mehra who considered the problem using the weighted
: . : : :
2 least square approach. Application of the derived results to this special
2 class of probiems will be considered in detail in the future.
3 4.6 Perspective
] Qualitative estimation theory for the deterministic system ST was considered
t
g by Luenberger {35]), Johnson [49]. Optimum filtering theory for stochastic
g linear systems was firstconsidered by Wiener [51). Kalman and Bucy [50]
3
- consider the special case of estimating the state of a Gaussian Markov
i process in the presence of nondegenerate Gaussian white observation noise.
»
2 Estimation in the singular situation (i.e., noise free observation) was
i
_:“ considered by Root [54]. (See also Van Trees [47] for detailed bibliography.)
”"; Estimation in the presence of colored noise only was considered by Bucy
|
: [52], Mehra and Bryson [53], Geesey and Kailath [55]. The consideration
; in this chapter provides a unifying approach to linear estimation problems
ig in general. This approach is valuable in the way that it reveals the in-
; T
trinsic structural properties of the estimating device.
X
.
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o
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The asymptotic behavior of the estimator was not investigated in

-
P
v

detail in the literature save for the case of estimation in the presence
of nundegenerative Gaussian white observation noise [S0]). In this special
case, the asymptotic behavior of the optimum estimator was investigated

through its dual relation with an optimal regulation problem [50]. The

investigation in section 4.4 is original. In this contribution, we can
study, in all gencral situations, the asymptotic behavior of optimum

estimators; it also provides the concepts required for qualitative estimation

THr

thecry for deterministic linear systems.
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CPITeal CONIRCL GF STOCHEASTIC LINESR SYSTEMS RITH XNOKR LIXAMICS

Iz this chapter, we zve =zinly concerned wirh the prodiem of con~

txclling a Iinear syszexm wich kasun

e

rnaxics, undéer cire assu=pticn that

serlect imformacsion is nmot avalladle. To have tke prodlex be ~cupletely

e that tiers ore entrews driviag disturbances. 4aad partial

Oé
k
:
;

cdsarvaticn of k2 state in cthe presesce (or Zbsence) of observatien
=oise. A spacial cas2 of cthe prodlex w2s investizated by Josednhr ané Tou
{=2], Gumcxzal 222 Fracklin §581. Woahe= {22), {271, vhere they assumed
thar the observatizsn molise is 2 nondegenerale while uaussian process. In

Sur Izmveszigaticn, wa assum2 char che odservaerion noise is in general de-

eansider the estimagion probiz= for the discrate case where we are z2llowed

to use fezecback control. Using the results in chapter 3, we derive a
stochastic dificvence equaticn for the conditional —ean estimates of the
currznt state. Ia secgion 5.3, we shall state che stochastic control
problen and the ortimality criteria is used to verify the opticmal sclu~
tion. The general results are then applied to a special case where the
observation noise is sequentially correlated. In section 5.4 and section

5.5 we treat the continuvous analog of section 5.2 and 5.3. The results
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can be summarized as the Separation Theorem. In section 5.6, discussions

of results and iadication of some further research is given.

5.2 Estimation with Feedback for Discrete Linear Systems

Consider a discrete linear system 83 described by

x(k + 1) = A(k)x(k) + B(k)u(k) + £(k)

3° {5.2.1)
y(k) = C(k)x(k) + n{k)

where x(k) £ R", u(k) e Rr,_x(k) e R x(0), g(k), a(k), k=0, 1, ...
are independent Gaussian random vectors with statistical law giver by

(3.3.2) to (3.3.4). The control u(k) is feedback in nature. Let us denote

the control sequence by

U(i,3) £ (u@@),ud +1),...,u(3d} 1i>3 . €5.2.2)

The observation statisiic at time k is v, , (k), where the subscript
~U(o,k-1)

tl{o,k-1) is to indicate that the past control sequence, U(0,k - 1), has

been applied to the system. The accumulative observation statistic at

time k is

YU(O,k-l) (k) = {1(0) ,l_l_l_(o) (1),...,%(0’1{_1) (k)} . (5.2.3)

We assume that the control is of the form

u(k) = éﬂk’YU(o,k—l)(k)) k=0,1, ... (5.2.4)

LN s . u 5
where $(k,*) is a measurable function from F(YU(o,k—l)) to R°. (5.2.4)

implies that the control is a function of past accumulative observation

information. In the folliowing, we shall denote F(Y (k)) by
Loras1on. U(o,k~1)
F(k,U(0,k - 1)).
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The information revealed by the accumulative information at time k
about the dynamical state of the system is contained in the sub-s-algebra
F(k,U(0,k - 1)). For some control purposes, the detailed knowledge of
F(k,U(0,k - 1)) is sufficient but not necessary. In most cases, since
the knowledge about the present state is necessary and sufficient for de-
signing a feedback control strategy, then the knowledge of the conditional
distribution of the present state, x‘k), is necessary and sufficient (see
chapter 2, section 2.2). In the following, we shall prove that the condi-
tional distribution of x(k) can be parameterized by some finite dimensicnal
quantitcies.

Theorem 5.2.1: For the system 8§, where u(k) is of the form (5.2.4), the

3

conditional distribution of x(k) is @ Gaussian random vector, and so is
parameterized by its conditional mean, %(k,k), and ccnditional covariance

Z(k) which are given by (k =0, 1, ...)

2z (k+1)

T(+DAGP () Z KT (DAY (k) y ()+T (1) B(R)u (k)

e2: (5.2.5)
£(&'K) = PR)ZK)H (K)y (k)
S+ 1) = a(k) -V (k + DCk + DLK)
(5.2.6)
2(0) =z - Y (OCOZ,
where
L0 £ AGOZIOA GOHRM) 5 ¥ (0) = £ C' (0) (C(OEC' (0)4Q(00) ™
(5.2.7)
and

V) £ b (Z00) = (¥ e M [VIC+DAGRIC (AR = A%)C (k#1) )

I e e e % B et wa e ae es on

.
e S S N
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P(t), I(t) satisfy the relation P(k)T(k) + Ef(k)g(k) = gn.

Proof: Let us break x(k) into two vecters:

x(k) = gl(k) +‘§2(k) (5.2.8)

where :_-:l(k), _}iz(k) ¢ R" are given by

Btk + 1) = A(Rx, (k) + 2(k) 5 x,(0) = x(0) (5.2.9)
%, (k + 1) = A(K)x, (k) + B(k)u(k) 3 x(0=0 (5.2.10)
k

and u(k) is of the form (5.2.4). From (5.2.10), we note that {x,(i)i 4

is F(k,U(0,k - 1))-measurable, and so we have from (5.2.8) that
i(kjk) = Elx (K) [F(k,U(0,k - 1))} + x, (K) . (5.2.11)
Let us define

Yo (k) = yik) - Cli)x, (k) = Ck)x, (k) + n(k) (5.2.12)

e

and define F,(k) & F(y,(0),...,y,(K)). {y()};_j and {x ()35 _, are

i=0
F(U(0,k - 1),k)-measurable, so {Xz(i)}§=o is F(k,U(0,k - 1))-measurable;

therefore
Fz(k)(: F(k,U0(0,k - 1)) . (5.2.13)
Using (5.2.4), (5.2,10) and (5.2.12) we have

2, (k1) = 4G, (4B(R)$ (K,x; (OHC(0)x, (0) 5.0,y (R, (K))

0 =0 . (5.2.14)

is Fz(k)-measurable, and so from (5.2.12),

. sk
Inductively, we have {x, (1)) _,

y(k) is Fz(k)-measurable. We have then
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(5.2.13) and (5.

"~

.14) imply that
Fz(k) = F(k,U0(0,k - 1)) . (5.2.1%)

Let us define

(A0

.17)

w

gz(klk) = E{;-gz(k)IFz(k)} ;.
(5.2,11) and (5.2.15) give

2(klk) = &, (el) + x; (k) . (5.2.18)

Now consider the stochastic system 8, and the deterministic system S described

by

:_c_?_(k + 1) = _.i(k)_}_{_z(k) + £{k) ; 52(0) = x(0) ~ (3_(50,;0)
8, (5.2.19)
¥y (k) = Ck)x, (k) + n(k)
¥k + 1) = a()x(k) + BKu(k) ; ¥(0) =20
Sl: (5.2.20)

¥ (k) Q_(k)gl (k)

Since 51(0) is known exactly, ﬁl(k) can be reconstructed b; any class of
observers. The conditional distribution of gz(k) given Fz(k) is Gaussian,
the conditional mean, &,(k[k), and the conditional covariance, L(k), are

&

given by: (Chapter 3, section 3.2 and section 3.3)

%
2, (k¥1) = TOFDAKP ()2, (IATRFDAKY ()3, () 3 2 (0) = T(0)x_
£, (k1K) = g(k)gz(k)+g“(k)x2(k)

(5.2.21)
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and

E(k#l) = AK) - ¥ (KHL)C(kF1)A(K)

(5.2.22)
E(0) = £ - IC(O)EOEC(0) + 0] cto)z,
8(k) £ AQR)Z(K).L (X) + R(k) (5.2.23)

¥'(0) = £ €' (0 COEC'O+QON™" ; ¥ (eH) € b (B ; k= 0, I, ...
(3.2.24)

Construct 51(k) by using

L/

z (k+l) = T(k+1)A(K)P(k) zZ; (k)+_'1j(k+l)§(k+l)y_(k)xl(k)+l(k+l)_§(k)_tg(k)
8;:
5 (®) = 200z, (Y (0y,G) 5 20 =0
(5.2.25)
where {yé(k)}:=0 is given by (5.2.21) to (5.2.24). From {(5.2.19), (5.2.20)

and (5.2.8), we have

y(k)

¥, k) + Y, (k) . (5.2.26)

Define the vector

z(k) El(k) + 2,(k) . (5.2.27)

By equations (5.2.18), (5.2.21) to (5.2.26), we have the conditional mean
estimate of x(k) generated by

2z (k+1)

T(k+L)A (KL (k) 2 (KT (k1) A (K) V) y (K)+T (I 1) B (k) (k)
e .

3
T’ (5.2.28)

i

Ak[K) = Pz (K)y(k) 3 2(0) = T(0)

% ©
with {V (k)}, _, given by (5.2.21) to (5.2.24).




Using equations (5.2.8) and (5.2.18), we have

2(kIK) ~ x0) = 2, &[K) + x,(K) - x () - x, (k) = 2,{k|x) - 3, (k)

{Z(k) }:=0 given by (5.2.21) to (5.2.24) is the conditional covariance of
_.52(1-:), and so it is also the conditional covariance of x(k). Since ¥ (k)
is F(k,U(0,k - 1))-reasurable, (5.2.8) implies that the conditional dis-
tribution of x(k) is Gaussian, by virtue that the conditional distribution
of x,(k) ic Gaussian.

We note from (5.2.3) and (5.2.4) that the accumulative statistic at

|34

time k depends on the control chosen which in turn depends on past
accumulative statistics. But as long as we are interested in the present
state of the system, the information contained ir F(k,U(D,k - 1)) about
x(k) is equivalent in some sense ro the stati-tical information contained
in the corditional distribution of x(k). Thecrem 5.2.1 says that the con-
ditional distribution of x(k) is Gaussian, and thus all the statistical
information revealed by accumulated observation statistics is summarized
by the conditioral mean, _:‘E(k:k.), and conditional covariance, Z(k). From

(5.2.21) to (5.2.23), we see that Z(k) can be precomputed before any ob-

servation is made and any contrel is applied. Therefore, all the statistical

information about the state at time k is summarized in the random vector

g iSron i nzie o

. &(k'k).

5.3 Stochastic Control of Discrete Linear fystems with Quadratic Criteria

A S ool

In this section, we shall consider the problem of controlling the

7
ﬁ discrete linear systems3 with quadratic criteria:
' N-1
I = 5{5’ (NE () + E ,(h (KHER)x(K) + u' (k)_bj(k)g(k))} (5.3.1)
k=0

Lo gLt

ke M e e g~ e -

b LAy N o
|
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with F 2 0, W(k) 2 0, and M(k) > 0. We are to find a control law of the
form (5.2.4) which wiil minimize {5.3.1) =subject to (5.2.1).

Using lemma 2.2.6 and (5.2.4), the cost J(u) can be rewritten as:

N-1
J(u) = s{a{g (NF x() |F@,u(0,58-1)} +Z E{x" (W) x (k" (MK ulk)
k=0
F(k,U(O,k—l))}}
N-1
- g2 WINE 2000 + ) (3" klDEEORENO+ (xR}
k=0
N-1
+cr(§ (V) +E H(k)g(k)) (5.3.2)
k=0

where {g(j)}f::o is given by (5.2.22) to (5.2.24). Since {g(j)};LO is inde-

pendent of the control, minimizing (5.3.1) is equivalent to minimizing
N-1

J'(u) = E{g' (N[WE 2(N[N) + z (5 (k|2 (k|k) + u' (k)_x‘_l(k)g(k))}
k=0 (5.3.3)

From (5.2.5), the eguation for %(k|k) is given by
Rl kHL) = AGDRK]K) - V(D CHDAR) Rk [K) - x(k)) + B a(k)
+ ¥ (HL)C (A E(K) + V' (kL) n (k1) (5.3.4)

%
wiiere V (k), k = 0, 1, ..., N are given by (5.2.21) to (5.2.23). The
process {x(k) }112=0 is given by (5.2.1). We have now a stochastic problem

to solve: Find a control law of the form (5.2.4) such that the cost (5.3.3)

is minimized subject to the constraints (5.3,4) and (5.3.1).

Lemma 5.3.1: The control law
8 = - @)4B' (KRBT B (OK(HDAMRRKIK)  (5.3.5)
K(k) = A(k) (K(k+1)-K(k+1)B (k) (M(k)+B' (k)K(k+1)B (k) )_15' (kK)K(kt+1))

A(k)+W (k) ;3 KN =E (5.3.6)
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is the optimal control law to the above stochastic control probiem, i.e.,

let {y_(k)};\zao be any control law of the form {5.2.4), wa have

IWH SIwW . (5.3.7)

The optimal cost-to-go is given by

N-1
A . ) % J * %
; Jilk,%) 8 z{g YO NE :_z*(xlu)+§}*'(i}i)w(i)g_“(iii)ﬂ PEME (@) ] kK = h}
3 i=k
N-1
= X'K(R)&+er) (A(1)-Z(i+1))K(i+l) . (5.3.8)

i=

Proof: We shall prove the lemma by using the Optimality Criterion (theorem

e T e o

2.4.3). Let us define for k=0, 1, ..., N

o s n

g ¥-1

3 C(k,2) £ 2'R(R + tr Z (B(1) - L + 1IKGE + 1)

2 i=k

o N-1

;| = R'K(K)& + tr (V (i + 1)CE + DAGEKGE + 1) (5.3.9)

where {g(k)}i\i:() satisfies (5.3.6). We have from (5.3.6)

CN,®) = 2'F & . (5.3.10)

o>

S L T i i i ]

Let U(0,k - 1) be arbitrary control sequence, and denote

% = E{2(k|k){F{k,U(0,k - 1)} = E{x(k) |F(k,U(0,k ~ 1))7 .+ (5.3.11)

: Let
| £ (krl) = AGOE - V(D) CHHDAK) Gmx(k)) + ¥ (k1) (k1) £ (k)
3 + V(D n(k) + BO)u" (k) (5.3.12)
; 2O(kH1) = AGOE - VHDC(RADAK) R=x(K)) + V" (kF1)C (k1) E (k)

+ V(k+1Dn(k) + B(k)u® (k) (5.3.13)

LTt

PN Ll o ra e
B R
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*
where u (k) is given by (5.3.5) with X replacing %(k]k), and g?(k) is
F(k,U(0,k - 1))-measurable function. We have from (5.3.12), (5.3.5),

(5.3.6):

E{x’ I_v_(k)x-i-u " (k)M(K)u * ) | F (1,800, %-1)} = R'K()R-%"A’ (KK (k+DAK) %
T (1)B (OK (L ACK) Zu OME) (k)

= Z'KOZ()-F " CHDK ()R (L +u (k) (4(k)+B* CORBE) )y (k)
+2'A" (K () BAOY (K)+rr{T (1) C (1) A (KK (1) )

= gﬂg(k)ﬁ(k)fgf'(k+1)§(k+1)gf(k)+tr{Qg(k)ﬁg(k+l))§(k+l)} . (5.3.14)
Combining (5.3.9) and (5.3.14) we have

E{h'h(k)x(k)*u '(k)%(k)u (k)+C(k+1,% (k+1)|F(k U(0,%-1))}-C(k,%) = 0
(5.3.15)
Since g?(k) is F(U(0,k-1),k)-measurable, we have from (5.3.13), (5.3.5),

(5.3.6):

E{R'W () &+u° ' () U(K)u (k) [F(k,U(0,k-1))} = R'K(K)Z-2'AT (K)K(k+1)A(K) %
+2'A" (OK (1B ) ()48 (DK (DB (K)) 1B (K (k1) A () 206 (k)30 (k)
= R'ROOZ-R DK 2% (kD 40" (k) (M(K)+B" (KK (R+1)B () (k)
+0° (k) (4B (ORFDB )Y ()4 (k) ((k)4B" (OK A1) B (k) ) (k)
+y_* (k) (4 (K)+B" (K)K(k+1)B (k) )™ (k) +erd (A (k)-E (1K (k+1)) }

'Kk )g.g (k+l)K(k+1)x (k+1)+(u (k)—u (k) ' Qi(k)+B' (k)h(k+l)B(k))(u (k)

x- I‘<>

u (k))+tr{a{k)-L(k+1)K(k+1)} . (5.3.16)

Combining (5.3.9), (5.3.16) and (5.3.15) we have since M(k) > 0 and

K(k+1) 2 6

SRCEAETR IO
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o
il

* * *
E{x'H()&+u " (R)M(K)u (K)+C(k+1,% (k+l) [F(k,u(0,k-1))}-C(k,%)

A

E{2 "W (k) 2+u’ " (K)M(K)u® (k)+C (k+1,8° (k+1) | F(k,U(0,k-1)) }-C(k,R) .
(5.3.17)
The lemma follows from the Cptimality Criterion.

*
Theorem 5.3.2: The control law u (k), k =0, 1, ..., N given by (5.3.5)

and (5.3.6) is the optimal control Law which minimizes the cost (5.3.1)

subject to (5.2.1) and (5.2.4). The optimal cost to go can be expressed

as:
N-1

3, (6,8 = 'R + trZ[(A(i) - L(EHL)IK(IH) + HE(E)] + F 2V
i=k

(5.3.18)

Tnis follews trivially from lemma 5.3.1 and equation (5.3.2).

Note that I(k), &(k), K(k), k =3, 1, ..., N can all be precomputed
when the noises distribution laws and the weightings (F, W(k), M(k)) are
all given. The performance measure can be easily evaluated when the con-
ditional mean of the state vector is computed via a minimal order optimum
observer-estimator. From (5.2.27) and (5.3.5), we see that the optimal

control law can be written as

W) = -0 + B (RR+DB(K)) LB (R (AR (k) 2 (k)

S(M(K) + B’ (ORKFDBK)) B (OKKFDAGMOY (y (k) . (5.3.19)
Denote the pure feedback portion of 2*(!&) by
g’;(k) = —(M(k) + B' (k)_lg(k+1)§(k))-l§_' (k)g(k+1)_&(k)_\1*(k)z(k) (5.3.20)
and feedback after compensation

uy (€)= =(4() + B (IKGHDER) 'R (K(FDAMR(Z(K) . (5.3.21)
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The optimal control is comwpused of:
* * * [4
u (k) = Bi(k) +_22(k) . (5.3.19%)

The detail structure of the optimal control system is described in Figure
5.1.

When the observaticn noise is nondegenerate, i.e., Q(k) > G,
k=0, 1, ..., we have the usual separation resnlts first derived by
Joseph and Tou. Theorem 5.3.2 indicates that separation is true under
more general assumptions when Q(k) and R(k) are nonnegative definite and
even when they are btoth zero matrices. The theorem can also he applied
to the case whern the observation noise is sequentially correlated. 1In the
following, we shall treat this special case in some detail.

Gonsider the system éz described by

x(k + 1) = A(k)x(k) + B(x)u(k) + &(k)
éz: (5.3.22)
y(k) = C(k)x(k) + n{k)

{n(k) }:=0 is sequentially correlated and is described by
n(k + 1) = A(k)nk) + y(k) . (5.3.23)

We shall assume that g(k), y(k), k = 0, 1, ..., x(0) and n(0) are inde-
pendent Gaussian random vectors with statistical laws given by (3.3.2),
(3.3.3) and (3.7.14). The control problem is to find control g*(k) of
the form (5.2.4) which will minimize the cost (5.3.1) subject to (5.3.22},

(5.3.23). From (5.3.22) and (5.3.23) we have the augmented system
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£k + 1) = A20Lw + 32uk) + 17k
Sa: (5.3.24)
2 k) = CCR)x° %)
whera
= =3
2(%) AG) 1 D 5 B(%)
s@={.. | fe=|".. .| F@=}...] ;
(k) o Ak [
g - Z(kj
£ J (5.3.25)
e y. _ . -
S (-) = [E(&) :_an -
Tne cost (5.3.1) can be written as
%-1
3P = E{_g':a'(:{)_iaia(:\') +Z(§_""(k)ga(k)§a(k) + u' (k)__\;(k)_q(k))} {(5.3.26)
x=0
where
, |E 12 . HK) D0
A WU PRl ¢S N (5.3.27)
[V [N 1]

The auguented control problem is to find u(k), of the form (5.2.4)

such that the augmented cost (5.3.26) is minimized subject to the aug-
mented svs.en (5.3.25) and coastraint (5.2.4). We note that the sole-
tion for the augmented contrel problem is the same as that of the original
wontrol problem.

Apply theorem 5.2.3 to the augmented control problem, we have

W) = - Qik) + B KA HDB ) TR (R AY 02 KK (5.3.28)
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K00 = A" 00 8% (o) K2 (DB (1) ()48 (R (1B 1)) 1B (10

a2 2@ = 2 (5.3.29)

- S .
and £ {k'k) is given by:

2(+1) = TO+HDAY(REZ(K) + TRFDAP RV Gy k) + TCHB () (k)

3]
(S

ki) = Rz + ¥ ©y®) 5 2(0) = T(O)x]

(5.3.3C
Z C'(0)
V*O-_n—( c(0r ¢' @) + M7t 3.3.31
v ( ) = ;‘.. {_\:( ,é'O':' ( ) 20 (3-3.3 )
“o
Bk + D = 22 - v+ DK+ 12K (5.3.32)

200 = 2002200230 F P20 5 Yk D s b R0 . (5.3.33)

Lemma 5.3.3: The solurion of (5.3.29) is given by

. K@) 10
Kk =|... T (5.3.34)
o 19

with K(k) given by (5.3.6).

Proof: e shall use the induction method. At k =X, (5.2.27), (5.3.6),

and (5.3.29) give

I
o

] ) K@) © 0
oy = |0 T = T : (5.3.35)

[=
o
o
o
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Assume that che statement is true at k + 1, we have from (5.3.25),

(5.3.27), and (5.3.29) thac

2 A(k) (K(k+1)-K(k+1)B(k) (M(k)+B' (x)K(k+1)B(k) )_113_' (K)K(k+1))A(k)+W (k) -0
K™(k) = cee *.
i 0
K(k) ¢ O
=] eee el (5.3.36)
0 . 0

and 30 the lemma follows.

Theorem 5.3.4: Th~ control law,

W) = —(u(K) + B GORRFDB)) B (ORKHARZ(k]K)  (5.3.37)
with K(k) given by (5.3.6} and

£(kjk) = (I ! gnm]f(k!k) (5.3.38)

is the optimal control law which minimizes the cost (5.3.1) subject to

(5.3.22), (5.3.23), and (5.2.4). The optimal cost to go is

N-1
3, (k,5) = 3'5(k)§+cr§ [(22 ()-2% 1)K @))% (1) 2% (1) HE L ()
=k (5.3.39)
This follows easily from theorem 5.3.2, lemma 5.3.3, and equation (5.3.28).

Rn+m’ and so z(k) ¢ 2" (see chapter 3). The detail

Note that Ea(k) €
structure of optimal control system is described in detail in Figure 5.2.

5.4 Estimation with Feedback for Continucus Linear Systems

. . . c .
Consider a continuous linear system g3 described by:
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ES
~
(2]
~

¥

= A(t)x{t) + B(t)u(c) + £(t)

sgz (5.4.1)
xl(:) [gl(c)z(c) + n(t)

e

~~
(md

Nae’
]

y_2(t) L gz(c)gg'.t)

rd

r, £{t) « RY, n(c) = R 1, y{t) ¢ R'. We assuze

where x(t) ¢ Rn,.g(t) £ R
that x(c ), {£(c), t 2 ¢}, {n(t), £ 2 tol are independent statistics.

)
x(c} -G ) and £(t), n(t), t 2 t, are white Gaussian ncises with

X ,L
(—o’—o
properties (4.3.2). The control u(t) is feedback inm nature.
Let us denote U[0,t) = {u(7):7 € [0,t)}, and
Y 0 = 1):7 & [0,t]}. The observation statistic at time
U[O,t){ )t] {‘XUEO,l)() ¢ [ st}
t is XU[O t)(t:) ( the subscript is to indicate that the statistic is de-
b
pendent on the past control values, The accumulative observation statistic
at time t is YU[O t)[O,t]. We shall assume that the ccntrol at time t is
’

a funcrion of accumulative observation statistic:

u(t) = oft,Y [0,e1) . (5.4.2)

u[c,t)

Denote F(t,U[0,t)) = F(YU[O t)[O,t]). The control u(t) is a random vector
b

which is F(t,U[0,t))-measurable.
Let f(s) be continuous on [0,t] with values in Rw, define the exten-

sion of f(s) by

A
(o

(5.4.3)

£(s) 0 <s
(ﬂtﬁ)(S) ={

£(e) t <s

A
-3

vtg thus defined is in Cm[O,T], the class of continuous function defined

on [0,T] with values in R". The control (5.4.2) can be expressed as

e e O
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a(e) = i“":yuio,:) {0,c]) (5.4.%)

. 2 . . . - r
where ¢(-,) is viewed as a mapping froz R CEIO,T} < R". The contrel
(5.4.58) is also 7(r,C[0,£))-ceasurable. We assuze that éﬂt,-) satisfies

2 Lipschitz cendition:
D3, E) - 2(e,g) o< ynlE-glt 5 f,g ¢ c[0,T) (5.4.5)

for 2il t - {0,T] where 2y is soze constant. Sczetimes we shall subpress

the depenlence on past control value, and write (5.4.4) as

ng .

u(t) = éﬂt,'ty) 3 Y= dy():z e [0,2); (5.4.8)

without causing confusion.

Theoren 5.4.1: Llet gz(t)g(c)g;(:) > 0, 2nd the control is of the feedback

- < o . . . . c o€
form (5.4.6). The conditional distribution of the current state of 83 is
Gaussian random vector, and is parameterized by the conditional mean,

#(t t), and cenc ~icnal covariance, ~(t), which are given by:

e w: 2y = (;(:)._a.(c)g(:)+i(c)g(:>-z(:)g(c)glfc)z(c)>3<t)+l<t>&f(t)x,<t>
* o *x * * .
+(_1_(t)§(t)j{2(t)+§(c)§2(t)-z(c)gl(:)gl(t)}{z(t))zz(t)

+I(e)B(cu(t)

-«

g_(tc;) = z(co);:oi(:o)gz(t(;)zz(to)
*
k(tv) = g(t)g/t)f!,(C)zz(t)

i(e) = (é(t)-g(t)gé(t)g_l(t)é (t));(t)+_f_‘_(t)(A(t)-g(t)_gé(t)g—l(t)éz(t))'
-L(0) € ()27 O, (€] (997 (0)¢, ()2 ()4R(E)

-R(E)C ()L™ (£)C, (D)R(E)

E(ty) = B L5 (e ) (€ DZ G TG, (E)E, 5 £(0) & C (ORC (D)

L
-0 -0~

(5.4.8)
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* *
where _\_[2(1:), L,(t) are given by

2 - At -1 . - = »
* 2092(‘:0)-&022“0)) ? o t= “o
¥, (©) ={ (5.4.9)
EOTE) + RO ENL (@) 5 € - ¢
(o) = 2(e)C (659 ;oo 5.4.10
Ll(t:) = g(t)gl(tlg {t) Pt (5.4.10)
a2nd P(t), T(t) are given by
I()Y, () = g“mz 3 G, (0)e(e) = Qm?n 5 T(eip(e) = l“‘z €2t .
(5.4.11)
Proof: Let us break x(t) into
x(t) = %, (t) + _:52(1:) (5.4.12)
and ﬁl(t), ﬁz(t‘) are given by
X, (2) = A(t)x, (e) + B(tdu(e) 5 x,(c) =0 (5.4.13)
%,(8) = A(D)x,(t) + 5(t) Poxy(e) = x(c ) (5.4.14)

u(t) is of the form (5.4.6) and is F(t,U[0,t))-measurable; therefore —}El(t)

is F(t,U[0,t))-measurable. From (5.4.12), we deduce
f(tle) = x, (1) + E{_:;:Z(t)lF(t,U[O,t)} . (5.4.15)

Let us define

n(t)]
Xl(t) = _q(t)il(t:) ; Xz(t) = y(t£) - Xl(t) = _g(t:)_gz(t) + [oJ . (5.4.16)
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Y% = Fiy - - £ i sV ‘t
Let Fo(ty = Fly,(v),7 < [0,r)). Since -y(s),y, (s)}__,

are F(t,U[0,t))-

measurable, then ‘XO(S)}fzo is F{t,U[0,t))-measurablie and so

F,(t) C F(t,yl0,t)) (5.4.17)
From (5.4.16) and (5.4.13), we have
t
y(t) = Xo(t) + C(t) { Qﬁ(t,i)ﬁ(r)g(r)dr (5.4.18)
Z e
o

where u(t) is of the form (5.4.6). Equation {5.4.18) is an integral equa-

tion. By the Lipschitz assumption, equation (5.4.18) can be solved by

successive approximations to yield a unique y ¢ Cm[O,T].[6] Setting

z(o)(t) 2 ¢ and

t
3 ~ ‘-1
170 = o] 2 @08y Dar
dto
t = {0,T] ; v=1, 2, (5.4.19)
Inductively, {1(')(5)};=0 is Fz(t)-measurab1e for v =1, 2, ; and so

<y(s):= lim X(‘)

. -y,

(s),:=0 is also Fz(t)—measurable, and
Fo(0) 5 F(t,U[0,t))
Combining (5.4.17) and (5.4.20), we have
F,(t) = F(t,U[0,¢£))
Equation (5.4.15) becomes
&(rit) = x () + Elx (6) |F,(t)

Now consider the systems:

(5.4.22)
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T

~
{

|

[t

= ;“-_(t)_:gl(t) + B{t)u(t) ; z_l(to) =0

gl: (5.4.23)
11“) = _C_(C)_:gl(t)

%, (t) _4._(:)3:_2(c) + g£(t) ; 5_2(1:0) = x(t ) ~ G_(_:go,z-o)

o]
it (5.4.24)
E(C)ﬁz(t) + n(t)

L}

zz(t)
Ez(c)ﬁz(t)

Apply observers theory to the deterministic system S; and stochastic

systenms S; (see chapter 4, sections 4.2, 4.3). 1In this manner we prove

the theorem easily. For detail procedures the reader is referred to theorem
5.2.1, vhere we have proved the discrete analog in great details.

5.5 Stochastic Control of Continuous Linear Systems with Quadratic Criteria

B . X . c
We consider the problem of controlling th2 coatinuous lineayr system 83

with quadratic criteria

T
I = E{x'(T)E x(T) + J x"(ON(E)x(e) + u'(OM()u(t)dd  (5.5.1)
t

with F 2 0, W(t) 2 0 and M(t) > 0. We are to find a control of the form
(5.4.4) and (5.4.5) such that (5.5.1) is minimized subject to (5.4.1).

For any control of the form (5.4.4) and (5.4.5) we have from lemma

2.2.6 that

T
I = E{E{g{_'(T)E g_(T)IF(T,U[O,T])}-}-J' E{x" (t)W(t)x(t)+u’ (£)M{t)u(t) |

t
o

F(t,U[O,t))}dt}
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= E{"(TID)E (T/ D+, 2" (' 0)¥()x(eie)+u’ (0)M()u(e)de}
‘t
T
+erfF D(TIT)+ W()L(r)de} (5.5.2)
°t
o

where Z(t), ¢ 2 t_, is given by (5.4.8). Ue note from (5.4.8) that I(t)

is independent of the control function; thus to minimize (5.5.1) is equiva-

lent to minimizing

T
3¢ () = e{TiDEF g(Tl'r)ar( 2 (eI ORE(e! )+ (0)M(e)u(e)de} (5.5.3)

*t
o

From (5.4.7), we can easily derive the differential equation for (t|t):

Rel6) = ADR(EIO+E, (O, (O-L] (D)€, () R(E!)=x(0))+75 ()G, (DE(D)

+L_"£(t)3_(_t)+§(t)_\_1_(:) (5.5.4)

with éq(t) = éo(t) + C,(£)A(t), and x(¢), t 2 t,» is a diffusion process

We have now a stochastic control protlem: Find a control

given by (5.4.1).

law of the form (5.4.4) and (5.4.5), such that the cost (5.3.3) is minimized

subject to the constraints (5.5.4), (5.4.1).

Lemma 5.5.1: The control law

~~
wn
w
w
S~

W) = (OB (DK )

(D) = A’ (OK(DHK(DA(D-K(OBON F (08 (OK(OH(E) 5 K(T) = F
(3.5.6)

is the optimal law for the above stochastic control preblem, i.e., if

go(t) is a control of the form (5.4.4) and (5.4.5), then

S 2 wW® . (5.5.7)
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The optimal cest-to-go ic
~ % [T * * -~ *
C -~ 2% - a7t H 2 ! 1 ., kN
J.N(e,8) = E{% "(TIDE 2 (TID+ & 'CGIONE@E )4 T ()Y (7)dt
‘t
% (cio) = &}
T * k.
= ®'K(t)a+er | (V (2)C, (TIR(TIC, ()Y, ' (1)
= P22 2=
+_I=I(1)Q(T)_]:I'(T))1(_(r)dr . (5.5.8)

Proof: As in the discrete analog, we shall make use of the Optimality
Criterion (theorem 2.4.4) to prove the lemma. Let us define for all
(t,%) < [0,T] = R™:

T
C(e,%) = i'ﬁ(t)g-x-tr’Jt(g;(r)_qz(?)g(r)gé(T)_\L:'(?)+_I;;(t)g(r)_l;;'(T))L\'_(t)df.:

l
(5.5.9)

where K(t) satisfies (5.5.6). From (5.5.6) and (5.5.9), we have
C(T,®) = %'F % . (5.5.10)
Let U[0,t) be an arbitrary control function and denote
% = E{x(0){F(t,U[0,e))} = &(c|e) . (5.5.11)

%
Let u (t) be given by (5.5.5) with ®(t|t) replaced by &. Denote the dif-
ferential generator of g(t|t) by £u('), we have from (5.5.4), (5.5.5),

(5.5.6):

E(S (C{E, )48 H(0) gy ' (DN(O)w (6) [F(e,U00,6)3)

er{(V) ()8, (DR(EIC) (DY, (ALY (D)Q(EIL; (DIK(E) 7+28'A" (DK(E)&+

20" (£)B' (OK(DRR'W(E)RF" (DM(E)u (£)

cr{(g’;(c)gz(c)g(c)gé(c)g’;(c)@’;(c)g(c)g;'(t))_fg(c)}-_g(c)g . (5.5.12)
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% . -
Ct(:,§)+E:$u*(C(:,g)fgfg{clgig '(e)ule) 'F(c,TG,;t3): =0 . (5.5.13)

O . . - = - . - = = o
Let u (t) be any F(c,U{D,t))-ceasurable function, we have fro= (.5.%),

(5.5.5) ané (5.5.6)
. O/ (3} N
EIS o (C(5, D+ R0 3 (X0 (€) F(2,L{0,e))
= tri (5 ()G, (DR (Y, (4L (DL, ()IE(E) -5 (D (E)
() (MO E(Dy () - (5.5.1%)

Sirce M(t) - 0, (5.5.13) and (5.5.1%) imply

o
]

C_(ER4ELE 5 (C{e, 245" R (@) (DN (2) F(e,0[0,8) -

[l

Ct(c §)+E{£uo(c(:,5))+y’ﬁ(c)ﬁ+u°'{t)g(:)gé(:) F(z,t[0,2)). . (5.5.15)

.10), (5.5.15), (5.5.9) and the Optimaliry

(W1

The lemma feollews from (5.
Criterion (theorem 2.3.%).
From lemma 5.5.1 and equation (5.3.2), we have easily the following:

£
Theorem 5.5.2: The control law u (t) given by (5.3.5) and (5.5.6) is the

optimal centrol law which minimizes the cost (5.5.1) subject to the con-

straints (5.4.1), (5.4.4) and (5.4.5). The optimal cost-to-go can be ex-~

pressed as

J:(c,g) = 2'K(t)&+er g;('r)? [g(:);(r)»'rgj(:)g,(:)g(t)g'(')yi'(-)g(:)
-t - - -
o

+L] ()Q(IL; (K(D) ds (5.5.16)
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where _(-), ¥, (-}, g;(:) are given by (5.54.8) to (5.5.10), and X(rj is
given by (5.5.6).
The structure of the optimal control system for Sg is described in

Figure 5.3, where we have decompcsed the control law into

* % *
u (t) = y,(c) + g,(r) {(3.5.17)
g;(t) is the pure feecdback from the ncise-free observation:
* -1 . * e =
B, (e) = =¥ (0B (D)R(E)Y, (0)x, (€ (5.5.18)
and g;(c) is z feadback after compensaticn:
* -1
2,{t) = -4 (B (OK(DR(Dz2(e) . (5.5.19)

In the speciai czse when Ea(t) =0, i.e., all observation is noisy, we
have the usual separation results due to Wonham [27].
The general results can be applied to the case where we have time-

correlated observation noise.

X c . - . s
Consider the system 83 described by (4.5.52), the statistical law of
underlying certainties are givem by (4.5.53) and (4.5.34). From these
. c . e o=
assumptions we can form the augmented systenm ga given by (4.5.33)-

(4.5.57). Let us define

o . |EE® 0 . [E e
W) =1... ° ... ; Fr=1l.." .. (5.4.20)
9 g [

We form the augmented cost

o
b=
~

T
J§<2)=E{g""(r)ff(r>+{ (W (©x (o (MU i) L (5.4,

't
s}

Dbl
P e ot ko et o o ot enr o R
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The augmented control problem is to find a contrel of the form {5.4.4),
(5.4.5) which will minimize (5.4.21) subject to the constraint (4.3.33).
Note that the solurion for the augmented control problem is the same sclu-
tion for the original control probler where we are to find control of
form (5.4.4), (5.4.3) so as to minimize (5.5.1) subject to the dynamical
system .

Apply theorem 5.5.2 to the augmented control problem, we have the

optimal control law given by
* \_l al AN ra ‘a‘ -
u (£) = -4 "(e)B (LK ()& (tit) (5.4.22)

K3 (0) = 4% (0)K® ()43 (1) 2% ()-8 (£)B% (01 ()3 (DK ()4 (¢)
¥%5(m = F°

- .o .2 . . -
and £ (t t) che conditional mean cf % (t), and is generated via a minimal

order optimum observer-estimator (see theorem 5.4.1).

Jenma 5.5.2: The solution of (5.4.23) is

a K(t) - 0
K(o)y=]... 7 ... (5.4.24)
]
with K(t) satisfying (5.5.6).
Proof: Partition gé(t) into
. ISTRLAER SPAL
Ko(t) = ces ces (5.4.25)
Rpr(8) ; Epp(®)

(5.4.23) gives:
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&, (6) = A'(OK (4K (DMK, (OBOY (0B (0K, (O+#(@)

K, (M =E

(5:4:20) f () = 4" (O, (6345, (DA K, (DBEOY (OB (0K, ()

KM =0

Ry (£) = B (0K ()4, ()A(E) Ky (£IBON (DB(OK ,(6) 3

Kpp(T =0
Ky (€)= <K}, (0)
Comparing with (5.5.6), we see that
ill(t) = K(t) . (5.4.27)
From the second equation of (5.4.26), we deduce
Elz(t) =0 (5.4.28)

substituting (5.4.28) into the third equation of (5.4.26) and then we have
= 5 2
_}'(_22(t) _g . (3-4._9)

Combining (5.4.25) to (5.4.28), we have (5.4.24).
Using Jemma 5.5.3, theorem 5.5.2 and equation (5.4.22), we have the
results:

Theosrem 5.5.4: The control law

u(e) = = (0B (LK) R(EE) (5.4.30)

with K(t) satisfying (5.5.6) and
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D 0182 (ele) = Efx(t) 'F(c,t [0,c]): (5.4.31)

is the optimal control law of the form (5.4.4), (5.4.3) which ninimizes
(5.5.1) subject to the dynamical constraints ég, (4.5.28). {See Fig. 5.4.)

5.6 General Discussions

In this chapter, we considered the problem of controlling a linear
system with quadratic criteria under the assumptions that

1) System dynamics are known,

2) Statisticsl laws of underiying uncertainties are known.
It has beern shown tnh:t under fairly general assumptions on the noise
structures, the optimal control strategy can be split into two distinct
procedures:

1) Find the conditional mean escimates of the current state

2)  optimally feedback as if the conditional mean estimate

of the current state is the true state cf the system.
[32]

This result is generzlly referred to as Separation Theorem or Certainty-
equivalence principle.[43] Theorem 5.3.2 includes as special case the re-
[56] (27] and theorem

sults obtaired by Joseph and Tou, Gunckel and Franklin;
5.5.1 generalized that of WOnham's.[27] In the following, we shall discuss

some further extensions of the research reiated to this chapter.

(A) Different Cost Criteria

In this chapter, we have considered exclusively quadratic criteria.
The first reason for doing this is motivated by the perturbation guidance

143]

apprcach to many guidance control problem, where we try to keep a
stochastic system on a precomputed nominal trajectorv. Such an approach

will naturally lead to the problem of controlling a time~varying linear
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systenm w3 ch quadratic criteria. There is also the reason that control

with quadratic criteria is one special case where we can derive explicit

results.
s o [538])

The a2pproach taken in this chapter follows that of Streibel in

. ' £32] . . .
the discrete case, and that of Wonham in the continuous versicn.
Theoretically, we can easily extend sections 5.3 and 5.5 to more general
situations where the cost criteria is not necessary quadratic. The main
difficulty that we shall fiuce is the exisience problem, which is a mathe-
matical rather than conceptual issue. In general, we shall have to formu-
late and solve a nzw stochastic control problem where the process being
controlled is the "estimated" process %(t!t), rather than the process x(t).

[59] [32]}

The interested readers are referred to Streibel and Wonham for de-

tail discussions.

(8) Terminal Time N > «(T - =)

In the discrete case, let us define K(k,N;F) as:
R(k,83E) = A" (k) (X(k+1,N;F) K (k1,3 F) B(K) ((K)+B" (K) K(kt1,N;F)B(K)) T+
B'(KK(k+1,N;E)A(K)HR(k) ;3 K(N,N;F) = F . (53.6.1)

From the separation results, the overall control system can be studied
separately by first considering the minimal order optimum observer~
estimator, and then the feedback control. In the case when N + ®, the
error covariance will remain bounded if and only if the system 82 is de-
tectable (see chapter 3). Thus detectability is necessary in order we
can reasonably talk about controlling the system during an infinite time

span. Next, we have to consider under what appropriate conditions the

LT
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feedback gain will remain bounded. We note that this is equivalent to

consider under what assumptions will K(k,N;F) remain bounded as N =+ =.

Comparing (5.6.1) with (2.5.15) where we replace
A(=k+k ) =~ A" (k)

.Q. - 9‘1 (k)

A MY A e e e e

M-kt ) = Q, (k)

- (5.6.2)
L MO-ktk 5~ R(K)

-

a BOi-ktk )~ A'(K)D' (K)

;o

R(N-ktk .N;F) ~ P(k,k ;F)

We can view K(k,N;F) as the minimal sequence with respect to a certain

sclution set. This allows us to consider the asymptotic behavior of

Y g vt

. K(k,N;F) as N » «. From section 4.6, we see that a necessary and suf-~

ficient condition for lim K(k,N;F) to remain bcunded and satisfy a steady-
I; ‘\_A”
state difference equation is that there ex.sts some matrix G(k),

k=..., -1, 0, 1, ... such that

(L3 e (5.6.3)
where
A(k) = A(k)-B(K)G(K) ; 23053 = ADAG-D) .. LAGG) . (5.6.4)

Note that (5.6.3) and (5.6.4) are equivalent to saying that there exists

G(k) such that if we use the contvol

IR

R dor

B
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u(k) = -G{k)x(k) . (5.6.5)

The resulting system

x(k + 1) = (A(k) - B(k)G(K))x(k) + £(k) (5.6.6)

is uniformly asymptotically stable. We shall call such a system

stabilizable. Thus detectability and stabilizability are necessary and

sufficient conditions which allow us to consider control of discrete
linear system over an infinite time span.
In the continuous time case, let us define K{t,T;F) as the solution

of
“K(t,T;F) = A' (0)K(E, T;E)+K(e, T3P A(E) K (e, T;F)B(0)Y T (£)B () -
R(t,T; )+ (e) 5 K(e,T;E) = F . (5.6.7)

In order that we can consider the problem of controlling the continuous
linear system sg during an infinite time span, first we have to require
that the error covariance will remain bounded as T » », A sufficient con-
dition for this is detectability of the system Sg. N2xt, we have to con-
sider the asymptotic behavior of K(t,T;F) as T » «., Comparing (5.6.7)

with (4.3,29) where we replace

A'(-t) — A(t)

0 — C,(0)

B'(-t) —~ (C,(v)
(5.6.8)

M(-t) — Q(t)

W(-t) — R(t)

K(-¢,T3F) — 3 (t)
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We have from theorem 4.4.4 that lim K(t,T;F} will remain bounded if and
T»@
oniy if there exists a G(t) such that (A(t) - B(t)G{t)) is exponentially

stable. This is equivalent to the condition that there exists a feedback

control

u(c) = -G(e)x(t) (5.6.9)

| such that the resulting system

T T ———=

x(e) = (A() - B(e)G(t))x(t) + 2(v) (5.6.10)

will be uniformly asymptotically stable. We shall call such a system

, stabilizable. Therefore, in the continuous case, detectability and

stabilizability are sufficient conditions which allow us to consider con-

trol of continucus linear system over an infinite time span.

é With the assumptions on detectability and stabjlizability, the asymp-
3 totic optimal cost rate is (see (5.3.18))

i N-1

g lin =3 3, (6,8 = lin g3 er ) (2(1) = ZUFDEEH) + K1) (1)

9 News Nerw T T T

. 1= (5.6.11)
3 in the discrete case, and (see (5.4.16))

ta sl Sem = tin =k er | OZOR 06, (RO O K

‘ fo Tmr TECDEN T L B ISR e S R g LR Rt ay R

+Li(f)9.(7)£?'(T)§(!)]dt (5.6.12)

in the continuous case. We note that the asvmptotic optimal cost rate is

independent of X%.

Dy rtar oo e Sl e a7

] In the time invariant case, detectability and stabilizability imply

(see chapters 3 and 4)
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1) We have a time invariant, minimal order, optimum observer-
estimator which ga2nerates the conditional mean estimate
of the current state.
2) VWe have a constant feedback gain.
Therefore, the optimum control system is also time invariant whereone
can write transfer functions for it.
The study on the stochastic stability is a topic for further research.
5.7 Perspective
The Separation Theorem, or certainty-equivalience principle, was
stated for discrete linear systems by Joseph and Tou,[56] Gunckel and

(58] Streibel,lbg] and for continuous linear systems by

(22],[27]

Franklin,
Wonham. The assumption was that the cbservation noise is non-
degenerate white Gaussian process.

The consideration in [56], [58], and [27] is that of quadratic
criteria and the approach is straightforward application of the Optimality
Criterion. The investigations by Streibel[sgl and WOnham{22] include mere
general cost criteria; the approach taken is that of first finding an
equation for the conditional mean of rhe current state, and then formuliate
a new optimal control problem where the process being controlled is the

conditional mean process; finally, appeal to Optimality Criterion.

The approach taken in this chapter is that of wonham's.[22] The cost

criteria we considered is quadratic, but one can easily extend the results

to more general cost criteria. The assumption that the observaticn noise

ig
s

a2 nondegenerate white Gaussian process was relaxed. It was proved

that Separation holds when the observation noise is one of the

following:

1) regular white Gaussian process

L T . e hiadl
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2) degenerate white Gaussian process

3) totally singular situation (i.e., noise-free observation)

4) colored noise (i.e., sequentially correlated or time-
correlazed)

5) summation of colored and white Gaussian noise.
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CHAPTER VI

CONTROL OF DISCRETE TIME LINEAR SYSTEMS WITH

AR ’-.I-a\’"}".‘tl' * e

™
AH

UXESOWY GAIN PARAMMETERS

T

6.1 Introduction

We have considered the control of linear systems with unknown dynamics

RIS i1 g

in the last chapter. Iow we shall relax some of the assumptions that all
déynamics are known. In many practical control problems, we are confronted

itn the precblem ¢f conrroiling an unkanown linear system. Ve may have &

.
%

crude idea about the dimension of the systex but the zero and pole loca-

Pl O

tions may not be fuliy known. In this chapter we shalil consider linear

AR Y (VI

. svstens whose poles arz known but whose zerces are unknown. ¥e shall

generalize this to the case of a dynanmical system in which the goin vector

is unknown. Admittedly, the situatioun in which we are to control a linear

e

systen with unknown gain is rare; however, this research effort is neces-

sary ard of importance in guiding our way to the problems of controlling

ER

an unknown linear dynamical systezn.

TR

The structure of this chapter is as follows. In section 6.2, we

ik d o

clearly state the probler under investigation. 1In section 6.3 we formu-
o late rhe control problexz and state the solstion . The approach taken is

that of Open-Loop Feedback Optimal (Q.L.F.(.) control (sea sucrtion 6.2).

T

Using the Discrete Matrix Minimum Principle, we darive the 2.L.F.0. con-
trol ssquence in section 6.4. The rxistence and unigueness of 0.L.F.O.

control is studied in detail in section 6.5, and the asymptotic conver-

gence properties of tha ovevall system in cectiun 6.6. Section 6.7 is

devoted to the discussion of approaches and of the results. Detailed

references are given in section 6.8.
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Theoretical results derived in this chapter will be applied to the

control of third order linear systems with unknown gain. The computer

sinulation resalts and discussions will be treated in tne next chapier.

6.2 Problem Statement

Let us consider the discrete linear system

x(k + 1) = A)x(k) + b)u(k) + (k)

9
.
~~
[}
.
(A8
.
[
A

¥(k) = C(kyxlk) + n(k)

27, vk}, (k) = R, A({k) is a known nxn matrix, C(k)

P
b
o
'1
v
o
]
fam
M
-
el
(\]

is a known mxn matrix, and u(k) is a scalar contrel. We assume that the

“gain"” vector h(k) is unknown, but we know rhat it satisfies the difference

equation
bk + 1) = G(k)b(k) + (k) (6.2.2)

where G(k) is a known nxn matrix and y(k) ¢ R". It is assumed that the

vectors {z(0), o(O) 2(k), ~(k), 1(k); k =C, 1, ...} are independent

Gaussian random vectors with kpown statistical laws:

x(0) - Glx .2 ) (£.2.3)
b(0) ~ Gz, ) (6.2.4)
2(k) ~ G(O,R(k)) (6.2.5)
a(k) ~ G(0,0(k)) (6.2.6)
1(%) - G(0,N(k)) (6.2.7)
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Our objective is to find a control sequence ‘u(d), ..., w¥ - 1).

such that the cost
N-1
J(w) = 1 Efx" (OF 5(5) +Z rx' (R)HR)2(K) + h(K)u’ (k)
k=0

is minimized subject to (6.2.1) and {6.2.2). The expectation is taken
over all underlying random gquantities. We shall assume that F, and W(k)
are nonnegative definite symmetric matrices, and that h(k) is a positive
scalar for each k.

Depending on the kinds of admissible controls that we are allowed to
chcose, different formulations of the stochastic optimization problem are
possible. in the most general setting, we may assume that the control is

a random functicn of the observed data, i.e., u{k) = = (u'F(U{0,k - 1),k)

is a corditional probability measure oa the control space. f the condi-
tional probability measure is regulsr, then the control is said to be a
mixed control law. If the conditional probability measure is singular
(Radon measure), then the control is said to be a pure con:irol law. Un-
fortunatcly, little can be done at this level of generality where we con-
sider both mixed and pure control laws.

In the next level of generality, we may confine ourselves to consider
only pure control laws to bz admissible, i.e., the control at each instant
is a fixed function of the observed data; in chis case, the resulting con-
trol will be a random variable through its dependence on the random ob-
served data. This tvpe restriction of admissible control leads ro Bellman's
equation [25] whose solution may only be approximated.

Finally, we may restrict ourselves to consider only deterministic open

loop controls to be admissible; this essentially means that we ignore the
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zero-mean random vectors and assume that the system will behave according
to its average behavior. Of course, this may not lead to a good control
system, especially whenever the covariances of the disturbances are la:ge.
To compensate for this, we shall recompute the open-loop optimal dete.-
ministic control after reevaluating the state « uncertainty of the system
at each and every step (time). A control sequence which is optimal in

this manner will be called the open-loop feedback optimal (O.L.F.0.)

{26],[63]

control. Another interpretation of 0.L.F.0. control is the
following. Assume that we are to control a system without knowing whether
any further observations will be available, or if available, we do not
know exactly when the data will be observed. Under this situation the

principle of optimality is difficult to apply. One logical, and in some

sense optimal approach, is to design an optimal control strategy based on

the total information avajlable uvp to the present time, and continue to

use this strategy until new information becomes available ; then we

change our control strategy accordingly.

In this chapter, we shall look for the O.L.F.0. control. We shall
see that such a control sequence is, in some sense, "adaptive" in nature.

6.3 Fornulation of Contrcl Problem and its Solution

The present time is indexed by k. Let us assume that the control
% % % x
sequence U‘(O,k ~ 1) £ {u (), u (1), ..., u (k - 1)} has been applied
to the system, and that the observation sequence
k
v . Lty . i)} LW ii iz
C“(O,k-l)(o’k) & ka"(O,i_l)(l) i=0 observed e would 1iike to fiad a
% .

"future" control sequeance U (k,N - 1) & {ufk), ..., u(N -~ 1)} so as te

minimize the future cost (cost to go) conditioned oa the total available
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information at the present time. Let us denote the s-algebra generated
by the observed data Y, . (0,k) as F(k,U‘(O,k - 1)); the symbel

1§ (O’k-l)
U (0,k - 1) is used to denote that the data is really dependent on the
past control history. Our aim now is to find the contrcl sequence

U(k,N - 1) such that the cost to go

N-1
IWLN-1)3E(0,k-1),K) £ 3 Bz (0F 2004 x' (DE@DG) [FG,L (0,519}
7k
N-1
+-;—Zh(j)u2(j) (6.3.1)
ik

is minimized subject to the constraints (6.2.1) and (6.2.2). The cost has

the simple form (6.3.1) because the future control sequence L(k,N - 1) is

assumed to be deterministic. (If the future controls were assumed to de-

pend .a observed data, we could not take the last term of (6.3.1) outside
the expectation operation.) It is now possible to formulate the protlenm
so thar deterministic optimization techaiques can be applied.

Let us define for j 2 k,

2G1GUT(0,k-1)) & E{x(3) IF(k, U7 (0,k-1)} (6.3.2)
Bk, U (0,k-1)) & Eb(3) [FCk,U™(0,k-1))} (6.3.3)
e, Gl u*0,k-1)) & (1K, 0" (0,k-1)) - x(5) (6.3.4)
e, GIU(0,k-1)) & B 1k, 0% (0,k-1)) - b(H) (6.3.5)

* *
We note that 2(j|k,U (0,k - 1)) is F(k,U (0,k ~ 1))-measurable if j 2 k,

so for j 2 k, we have
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ES * %
Etx' (13 x()IFGLU (0,k-10)) = 30 16,07 0,103 3Gk, U7 (0,k-1)) +
£(e”( 1k, U7 (0, k-1 e (l%,07(0,k-1)} |F(k,U" (0,k=1))}  (6.3.6)
-~ —_— e b > - = J B ] > K [y ’ 0. .

where M is an arbitrary nxn matrix. If we define the state-error second-

moment matrix

£ (16,070,-1)) 2 Ele (1,07 (0,k-1))e! (15,07 (0,k-1)) 1P (U7 (0,k-1)) }

(6.3.7)
then using (6.3.6) and (6.3.7), the conditional cost (6.3.1) can be written

as follows

J(U(x,N-1)307(0,k-1) k) = %5_ (81,07 (0,k-1))F 3(N!k,u*(o,k-1))
N-1
3t ELGU"0,k-1) + %;Z 2 (G ,UT 0, k-1)H (D2 (G [k, U7 (0,k-1)) +
j=k
er WL, G107 (0,k-1)) + h(§)u’ () (6.3.8)

To compiete the formulation, we shall have to derive dynamical equations
* %
satisfied by %(j|k,t (0,k-1)) and ;x(jlk,u (0,k-1)).
Since all the noise sequences are assumed to be uncorrelated and

white, we have (see chapter 2, section 2.3)

EFZ(3) IF(k,U (0,k-1))} = 0 ; E{y()IF(k,U ‘0,k-1))} =0 , j zk

(6.3.9)

The admissible contro. is assumed to be Jdeterministic; hence, (6.2.1),

(6.2.3) and (6.3.9) imply that, for j 2 k,

G, ET (0, k1)) = ARG K,U (0,k=1)) + Bk, U (0,k-1))u(j)

(6.3.10)
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BG + 1]k, U (0,k - 1)) = G(1DBGik, U (0,k - 1)) (6.3.11)

T

with initial condition (at the present time j = k)

.
; . * x
%(kjk,U (0,k-1)) = E{x(k) [F(k,U {0,k-1))} ;
(6.3.12)
-~ % *
b(klk,U (0,k-1)) = E{b(k) |F(k,U (0,k-1))}
1 From equations (6.3.2) to (6.3.5), (6.2.1), (6.2.2), (6.3.10), and (6.3.11),
we obtain the difference equation for the error vectors for j Z k:
e, GHLk, U (0,k-1))]  TAG) 1 u@Ife, Glk,U(0,k-1))] FE@)
; e =1... .. - (6.3.13)
; e, Gk, U 0-10f Lo 1 e jley Gk v 0k Lyl
The initial error at j = k only depends on {£(i), v(i)}, i £k - 1, and
; in(i)}, 1 ¢ k, and so it is independent of {{(i), y(i)}, j 2 k. Also,
: since all noises are uncorrelated, zero mean, and white Gaussian, (6.2.%)
A and (6.2.7) imply that
%
3 E{£G)E G F(k,U (0,k-1))} = R(D)
i (6.3.14)
3 %
] E{x(i)y G FK,U (0,k-1))} = N(j)
rl
?‘ If we define the second-order moment matrix (for j 2 k)
b
o ; %
: e (jlk,U"(0,k-1))
St * o ] . * LI | . *
. Z(31k,U 0,k-1)) = E . e, GG 1k, U7 (0, k-1)) te) (51K, U7(0,k-1))]
e, (31k,5"(0,k-1))

i [F,U” (0,k-1)) (6.3.15)
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Equations (6.3.13), (6.3.14) and the independence of initial error
X
(3 = k) and of the future noise sequence irply that E(jIk,U 0,k-1)),

j 2 k, is generated by (see chapter 2, section 2.3)

L(+1]k, U (0,k-1)) = AG,u(I)IEG |k,U (0,k=1))A" (§,u(i)) + R(3)

- (6.3.16)
where
AG) T u@I] RG) ¢ O
AG,u(d) & 1]... e s R AL L. . (6.3.17)
0 153 0 NG)

The initial condition is given by

e (k|k,U" (0,k-1))
ks - [} * e 1 * 1

: ie) (k|k,U" (0,k-1)) le) (k|k,U (0,k-1))]
e, (klk, U (0,k-1))

*
Z(k'k,U (0,k-1)) = E

|F(k,u" (0,k-1)) (6.3.18)

*
From (6.3.12) and (6.3.18), we see that x(k|k,U (0,k-1)) and
. %
b(k]k,U {0,k-1)) are the conditional means of x(k) and b(k), respectively,
while E(kfk,vx(o,k-l)) is the conditional covariance matrix of the aug-

mented vector
x(k)
b(k)

These quantities can be generated by the following identification equations,

*
(6.3.19)-(6.3.23), once the past control I (0,k-1) has been chosen:

-

B <
[
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*
%(1+1]i41,U° (0,1))

= [L, ¥ Ci#2]4,07(0,1))E(1+1) JA(E,u" (1))

) . % 2n
p(i+1lji+’,u (0,1)}

x(1|1 U (0,i-1))
+v *(+1]1,u” 0, i)y@+i) ;3 i=0,1, ..., k-1
"

b(lll U (0,i-

200l0,u%(0,-15]  [r(0j0) [Tl (O CUOZ, € (0+0(0) ™ (c(0)x -3 (0))

>

b(0 0,07 (0,-1) h(0]0) I. b,
(6.3.19)

ot : . - - ’1\
C(l l l) = [C(l N l) . 0 ] 3 1 0) -L’ LR ] ‘: l (6'3°2'~I

* %
and V (i+1li,U"(0,i)), i =0, 1, ..., k - 1, is a solution of the following

equations:

_\_r*(i+1|i,u*(o,i))(Q(i+1)§(i!i,u*(o,i))_é_'(i+l)+g(i+l)) = B(1]1,07(0,1))8" (3+1)

; i=0,1, ..., k-1 (6.2.21)
~ * . % % - * ~
A(]4.07(0,1)) = A(L,u (1))E(]4,U (0,i-1))A" (i,u (i) + R(d)

i=0,1, ..., k=1 (6.3.22)

* ~ ES * % -~ ~ *
E(E+1]4+1,U7(0,4)) = A(i1,U7(0,i))-V (i+1{i,U (0,i))E(E+1)A( 1,07 (0,1))

i=0,1, ..., k-1 (6.3.23)
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Referring to chapter 3, section 3.3 we note that the identification

equatiors represent an optimum observer-estimator for the augmented

x(i+1)] N x(i) £(1)
[ j Ali,u (1) ] +L ]
b(i+l) b(i)]  Lx()
x(1)
y(i) = E(i) L + n()
b (i)

If either Q(i) > 0, 1 =0, 1, ..., k = 1, or C(i+DR(I)C'(i+l) > 0,

system:

(6.3.24)

39,

* %
i=0,1, ..., k - 1 (or both), the unique V (i+ili,U (0,i)) which

satisfies (6.3.21) to (6.3.23) is given by
f(i+1li,u*(o,i)) = Z\__(ili,U*(O,i))Q' (i+1)e
[g(i+l)_l_(i|i,U*(O,k—l)_§'(i-'rl)+g(i+l)]_l
i=0,1, ..., k-1 (6.3.25)

and the identification equations specify a Kalman filter for the aug-

mented system §.

In all cases, where the driving and/or observation noises may be
degenerate, the conditional covariance, ;(kik,Uﬁ(O,k—l)), given by (6.3.21)-

(6.3.23) is unique; and the conditional mean
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#

% (kk,U" (0,k~1)
‘ e

b(kjk,U (0,k-1)

is unique almost surely. (see chapter 3). Thus, we may assume that these
%
quantities are known if U (0,k - 1) has been chosen. We can then formu-

late the following deterministic control problem at the kth-step:

Open-Loop Control Problem (k £ § £ N - 1):

Given: %(i+1]k)° = ARG K + b Ku() (6.3.26)
b(i+1|k) = 6(3)b (k) (6.3.27)
ZGHL[K) = AGLuGNEGIRAG,u(3)) + REG) (6.3.28)

with known initial conditions at j = k

2l = 2klk,0"0,k-1) 5 Bkik) = Bkjk,u¥(0,k-1)
T(klk) = Z(k[k,07(0,k-1)) . (6.3.29)

We are to find a deterministic control sequence U(k,N - 1) such that i%

minimizes

JUE,N-1) 3 U (0,k-1),k) = %{3' (F 2(N|k) + eefF v IOb+
N-]
Z @& GIROE@GRGIK + erfiHzGik)+ 'n(j)uz(j>} (6.3.30)
j=k

subject to the constraints (6.3.26) to (6.3.28), where the matrices F and

W(j) are defined by

*Wﬂ shall not explicitly stress the dependence on the past control history
5*(0,k-1); for this reason the symbol U*(0,k-1) shall be dropped without
causing any confusion.
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o)

ministic control prodiem, we shall denvte its optimal cen-

Loy

(5.3.31)

¥ 9
£ = { ]

2 9}

For the 2bsve deters

v 7
=

O - =1
trol saguenze by U (%,%-1} = {u (3 R B §ok° where the stoerscrin: o 3is us=2 to

- . - . o,.- .
Cempre odtin=l! for vhe cpen-loco coatrol orsblenm: the swmdol w (§.k) is uwsed

te irdicate that the coacrel is epen-ilcod coorinzl coaditiored on the obser-

wvatioa up to ithe present time K.

itz soluticz for the dove Cererxinistic opruimal coarrsl problem is
given below; che éarziled larivazion wiil be carried out in secticn 6.4.

— - - . - .
The cprixal coarrol segueance. U (k,%-1), is givea by

(5 X)) = -{AG 8% GGG

39 r‘: (6] -k)]

-h(j k)d’ (J*I)L
. (J’R)J '

(6.3.32)

where K(j:k), j=k+1, ..., N - 1, satisfies the matrix differeace

equation

(G

\

= @' (G RWIRGH[K-KGHTKB% (G k) RG] k)+‘°'(j:k)g(j+1§k)§_°(j;k.)}'1-

E2' (G WRGHIKDID GlodGIn (6.3.33)

s 0

E 0 0
kK =|0 0 ... 0
e 0

and for j =k, ..., N~ 1
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& Giv = A3 GIvE  Ging G:2)

!}‘3(1) [1] [

. ... AG)E

A@ =J... N RN £6.3.34)
)gla .- é(])gw

BN = BGY - 4GHE G0 G (6.3.35)
- C 2GR
AG-DsGe] 266" (e
8G) = : A I T : TV
; ] =0z v 13
-G < i
%b(] n‘*)ﬁl .
S Gle = : {6.3.36)
£ Gloe,
B K = k() + el  GlOSGHDT . (6.3.37)

The matrices E;(jlk), S(G+1), 5=k, k+1, ..., N-1, are given by

LGHIK = S GRS GHIE) =k oy N1
(6.3.38)
<0 . %
£ k|6 = £ (k[ U (0,k-1))

53G) = A'(HSGHAG) + H(E) i=k, ..., N-1 ;5 S =F

(6.3.39)

and the vector é?(jlk) satisfies

s R e L I L L SN

o
-

"The vectors 215 &5y v & represent the natural basis in Rn'




DGR , =K, ..., X=1 ;5 b {kik) b!!.l:(_ﬂ ~-1)) .
{6.3.45)
To find the G.L.F.0. coar¢ol sequance, we have o solve the a2bove
open lecp control prodlen for k=0, 1, ... . The O.L.F.0. concrol

X - -
‘u (x) w_n 1S then given by
S

e () = Gk} w=€,1, ...,%-1 (6.3.41)

where v (k 'k) is given by (6.3.32) to (9.3.50). The structurs of the
0.L.F.G. control systen is described by Figure 6.1. Though tha ecuations
are co=plicated, the digit=l cospurer izplezmeacation of 0.L F.0. coatrol
saguence ig actuasly straightforward. A flow char: description of the
0.L.F.0. control is given in Figures 6.2 and 6.3. 1In the Irllewing, we
shall oucrline the cozputational procedure £o find the 0.L.F.0. control
sequence.
i. 1If k =0, y(0) is observad, and E(O;G,Uﬁ(o,-l),
5(0}0,U"(0,-1), Z(0]0,5" (9,-1) are given by (6.3.19)
and (6.3.23). If k > 0, assume that U*(O,k—l) is
chosen and YU*(O,k—l) (0,k) is observed; computre
20klk,U" (0,k-1), BCk|k,U"(0,k-1), and
_z.'l(k}k,b'*((),k-l)) using the identification equations
(6.3.19) o (6.3.23).
2.  Compute @ (jlK), _ﬁ(jlk), _'éo(jlk), h(jlk) for
=k, k : 1, ..., N -~ 1 using equations (6.3.24)
to (6.3.40). i

3. Compute K(k+lik) using (6.3.33), and the 0.L.F.O.

control to be applied at step k is given by (6.3.41).
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Fig. 6.3 FLOW CHART FOR COMPUTING THE O.L.F.O.
ADAPTIVE GAIN AND CORRECTION TERM
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4. Advance k - k + 1 and repeat 1 through 3 until
k=XN-1.

We note that the 0.L.F.0. control sequence U*(O,N - 1) is adaptive
in nature.

Before we go into the derivation of thz 0.L.F.0. control, let us
first look intc the solution carefully and discuss some of its implicatioms.

In essence, we are forcing some sort of "separation" in our formula-
tion. The overall control problem is split intc an identification and a

deterministic control problem. However, the effect of the identification

erxor will be taken into account in the deterministic contiol problem.

Thus, this does not correspond to pure separation as it is in the case of
stochastic contrel of linear system with known dynanics(chapter 5).
Let us first look into the identification equztions (6.3.19)-(6.3.23).

Suppose that Q(k) > 0. If u(i) = 0, then from (6.3.21), we have

V) (1+1]1,500,2))
V' (i+1]1,0(0,1)) = (6.3.42)
0

and so (5.3.19) implies

b(i+1]i+1,U(0,1)) = G{i)b(ili,u(0,i-1)) . (6.3.43)

Therefore, a nonzero input is necessary to identify the gain parameter

vector b{(k). From the equation (6.2.1), we see that if u(i) is very large,

then for the most part the value of x(i + 1) will be due to b(k)u(k),

and so the obsarvation y(k) will contain a large amount of information

about the gain parameter b(k). Therefore, we would expect that large input
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magnitudes will be helpful for the identification of b(k). For 2 control

}E;é, if its total energy is aigh, we would expect such

sequence {u(k}
control sequence to be useful for identification purpose. But large con-
trol energy will also give rise to a high cost (6.3.1). From the control
point of view, we would like to use just enough control emergy to regu-

late the state of the system. In genexal, there is a conflict between

identification and cuntrol, and a reasonable control sequence should

apprepriately distribute its total energy to identify and/or control. of

the system §.

Let us ccnsider (6.3.32)-(6.3.33). Comparing with the Levis'[75]

msults, we note that uo(jlk) is the optimal contxrol for the problem of

controlling the system S

k:
(341K
S, 2GR = AWEGI0 + BGI0eGIK 5 xGHl A L.
' Gtk
(6.3.44)
with the cost criteria
N-1
3= 2 @OOF 200 (ZEOTE[0E 0 G o G +2x" (1]k)dE+1)u(ijk) }
=k (6.3.45)

Therefore we can visualize ﬂ(jlk) as the modified relative weighting on

the control. From (6.3.31), we note that h(j]k) relates in a direct
manner with gz(jlk). In a statistical sense, gb(klk) reflects the level

of confidence we have about the estimate of b(k). The modification on the

relative weighting on the control is such that heavy weighting is put in_

the control if we have little confidence on the estimate of b(k); therefore,
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the control action will be very cautious and control energy will not be

used unless it is very necessary.

Let us write

WK = - (0% k[OR L H0B® Gelk)) THE0T (e JR (ke 1) B (x[K)

G vy | AR (41
- - - - -1~
- GO0 IR EHLIOBS (k[K)) R (et 1)
0 : ) (k]k
0 : 0 2% (k]k)
®«inl... e talwaaen] ... i (6.3.46)
- (o]
0 11 o (k|k)
We shall call the row vector (lxn)
1
e} ge) = n
s(k) & =(hk]R)+° (kIR KR+LIK)B (kjKk))™ -g '(k|k)§(k+l|k)®(k}k}[...
- {
v 0
(6.3.47)

the 0.L.F.0. adaptive gain, and the cerm

WK = ~{ Bek]l)+5°" (kJOR Q1 OB [k 12 5°" (kK (1K) @ (k|K)

[} r2° (k| k)
C e HRk R G | L (6.3.48)
"1 o (klk)

I s

the corioction term. Thus, the O.L.F.0. control, (6.3.46), becomes

W) = kR KK + kK . (6.3.49)

From (6.3.33)-(6.3.37), we note that gb(klk,uh(o,k—l)) affects indirectly

the O.L.F.0. adaptive gain and the correction term. The cross-error
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*

covariance, Exb(klk,r (0,k-1)), only affects the correction term; and if
*

gxb(k[k,U (0,k-1)) is zero, then from (6.3.36) and (6.3.48) w2 conclude

uClk) = 0.

*
Assuae that gb(i!k,U (0,k-1}) = 0, then from (6.3.33)-(6.3.37), we

have inductively

TR(k) 1 0
Kklk) ={... ... (6.3.50)
0 0

where K(k) is given by (5.3.6), and from (6.3.47), the 0..L.F.0. adaptive

gain is
o(®) = —(h(k) + b'(OK&K + Db(K)) 'b' (OK(k + DAK)  (6.3.51)

which is the truly optivum gain (see chapter 5, sectien 5.3). The assump-

* *
tion that f._b(k]k,U (0,k-1)) = 0 also implies ;xb(klk,!} (0,k-1)) = 0, and

so the correction term is zero, and

W k[K) = ~(hk) + b’ (OKGHLBE)) b (KG+DAMRO k[k) . (6.3.52)

Thus we see that if for some k, the identification of b(k) is assured to

be exact, i.e., the level of confidence on the estimcted gain pavameters

is very very high, then the O0.L.F.0. control will act optimally and use

the obtained estimate of b(k) as if it were the true gain vector.

Finally, we would like to comment on the computational requirements
of the proposed scheme. The computation of the O0.L.F.u. control is done
on-line.

At each time unit k, we have to solve a one step 2n-vector dif-

ference equation and a one step 2n x 2n matrix difference equation,
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{6.3.19)-{56.3.235- compurirg tha parauweters, (6.3.33)-(6.3.5G), vhich in-
volva scme on¢ step coxputation, (6.3.3%)-(6.3.37), and an N - k steps
o-vecier difference equatien (6.3.540) a2ad 2n ¥ - k steps nxa watrix dif-
ferezce eguration £6.3.33); iiraliy we have to solve an N — k step

=+ 1)a x (@ + 1)z macrix difference equaricn (6.3.33). (Note that the
matrix differcnce egration (5.3.3%) can be preccxputed off-line.) Tt2
U.L.F.0. control is then computed veing (5.3.32). The roral storage
capaciry ceaded correspoads to the storage of the stare and paraceter
estimeres (2a) and the ervor covariaace zatrix (2n x 2n). The capability
of ccxpuricg rhe J.i.F.0. controi sequence in alwmost veal tice will de-
pend ca thz complesity of the system beiQg considered and the cewputation
spead of the digital computer vsed to implexent the O0.L.F.0. control (see
slso chagter 7).

6.4 Cpex-loonx Oprimal Controi

In this section, we shall derive the open-loop oprimal control for

the dererxinistic control problem {6.3.26)-(6.3.31). The deterministic

Lad)

ormulzricn allows vs to use the discrete —atrix minimum principle

(Theoren 2.54.1) o cderive the set of uecessary conditions for optimality.
Ler us form the Haziltonian for the deterzinistic control problem

(6.3.26)-(6.3.31) for j =k, k+1, ..., ¥ - 1.

Hipy =<2, (%1 ¥),4002G 104G Re()-2( K>+, (5+1]K),6()b( 1)~

B0 oo HEGLGNZGIOR! GG HR-2G 10IR! (L1

£ 2<2G0 @G> + 2 h@G) + F o BDIGID 6.4
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where p (jlk) is the costate vector associated with x(jlx), (i k) is
2, Gl G0, p,

the costste vecter associated with éﬂjlk) and P(j|k) is the costate

matrix associated with‘g(jlk). Use of the discrete matrix minimum prin-
- ciple leads to the following relations

fa) The canonical eguations are:

) 2061 = aNLGo + 2°G oG (6.4.2)

B°G+1li) = ()57 G lw) (6.4.3)
%‘ 0,. t -~ o O.,. T C,. i
. EUGHK) = AG,u GIETGINA'G,u" GlK) + R() (6.4.4)
1 2 Gl = A"y (311 + HHK Gl (6.4.5)
S p2G 10 = 6" (NRCEHIK + P°GH e [ (6.4.6)
; b 2 (R TR T By J -4
PGl = &' GG (1 0AG,0° (G 0) + S UG (6.4.7)
y (b) The boundary c¢onditions are:
at time k: £°(k[k) = 2(k|k, U (0,k-1));5°(k|K) = B(k[k,0" (0,k-1)) ;
: ) .
‘ L (k|k) = Z(k|k,U (G,k-1)) (6.4.8)
3
; i ac cime N: E:(N!k) - F g?(le);gg(NIk) =0

o) = 4§ (6.4.9)

' (¢) 1In minimizing the Hamiltonian, we set (for j 2 k)

oH Oy . . <

50 (D) = 57" (loop Ll +2er(R]) (HLIDAGIZ (3 [0+

w5 k)
)z, G 0BT, (HLI 1 G0+ (h (@) +er (220 (3]0R] ) G101} = 0

o e et ae =

(6.4.10)
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i § where we have decomposed the costate matrix as
't
F follouws
9 o ,. . .0 ..
PGl =) ... 6.4.11)
: O sy » O r:in
é zzl(Jlk) : 222(3“\).!
2
F From (6.4.7) and (6.4.9), we deduced that g?(j}k) is nonnegative definite
g since F and W(j) are assumed to be nonnegative definite. Therefore,
-
9 "2H
3 3 = h(§) + 2 er{Z GRS, (5 + 1]} >0 (6.4.12)
: 2. I 2p 15y
ELING DY I
§ u (k)
E and so the control uo(jlk) given by
X Orify — _rpes O, 1yvp® 72 =120, /.1y 0
w (§lk) = ~[h{i)+2er (g, GlROR]; G Glp, (G+1]0+
2tr(?°

E] GHLIDAGLY GIOHEEE GIORD, G+LI)) 5

izk (6.4.13)
: indeed minimizes the Hamiltonian.
:' From (6.4.4) we obtain equations for ﬁxb(Jlk) and ﬁb(Jlk) for j 2 k:
3 22 GHLiK) = ADZS GGG + G0 GiKG6 (5) (6.4.14)
4 Zxb 205 N2 )Y JHIZpRITI2 e
] 0. 3 s0 s eyt (53 4 Mfs"
‘ I, (341]k) = 6L GG () + N3 (6.4.15)

2 a3 1

wich initial conditions

a7

[RFIERa Y MY

-0 ; . * . O _ * _
ﬁxb(klk) ;xb(klk,u (0,k-1)) ;b\klk) = ;b(klk,u (0,k-1)) . (6.4.16)

PP T T TRE ST

Ef*“hwmﬁ,m_ .
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From eguations (6.4.7) anéd (6.4.9), we obtain the equutions for

(Jlk) and P (Jlk) for j =Lk, k+1, ..., N:

B0, Gl = A'(DEY, G+1H0AG) + § ¥ (6.4.17)

B, (31k) = AT ()R], (G+1[K)GG) + u (3li0a’ (R]; GHLIK)  (6.4.18)

(\:Ik) gg,(nlk) =0 . (6.4.19)

i' 3
We note from (6.4.13) to (6.4.19), that the values of gg(jlk) and
zgq(jlk) are irrelevant in computing the open-loop optimal control se-
&
quence uo(j]k). From (6.4.17), P (jlk) is independent of the observa-

tion and the control, and thus it can be precomputed. To emphasize this

fact, we define
S(j) & ZP (jik) 20 : N2j20 (6.4.20)
and so S(j) satisfies the matrix difference equatiun
$(3) = A" (H)SG + DAG) + ¥G) ;5 s =F (6.4.21)

From (6.4.15), E:(j!k) only depends on the observation; thus it is

meaningful to define a "modified control weighting":

h(ijk) & h() + tr(_):_;:(jlk)_s_(j +1) >0 . (6.4.22)

Let us define

o ,.
) r2e9, G lkoe,
¢ (k) = : e R . (6.4.23)
o Loy
2312(J|k)gn
Then by using (6.3.34) to (6.3.36), (6.4.2), (6.3.13) to (6.4.23), we obtain

the set of matrix difference equations: j =k, k+ 1, ..., N ~ 1.
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20 (i+L]kj
- 2GR G Gl ...
8 (+1]K)l

(6.4.24)
PG k)] Pa,‘;cjﬂ i) G
cee | =DrGIp o [ #BGI ... (6.4.25)
LGy T [ & (1K) o’ Glx)
with boundary conditions at time N:
o (k) T 0 ... 0
RN N LSS (6.4.26)
ol ce e .
o 0 -0

From (6.4.24) to (6.4.26) and (6.4.3), (6.4.16), we can solve for
E:(j!k), °la, 2°(3]k) and g?(j+lik). To 'bypass''the two point boundary

value problem, we define the matrix g(jlk) by

(6.4.27)

Substituting (6.4.27) into (6.4.24) and (6.4.25) we obtain

20 (5+1|k) FeI)
[1+ %G iR (0B (GRG+H k) ] =® Glw
e s° (3 1k)
(6.4.28)

2% (3]k) 2 (+L |k
KG|x) - DGlN ... =® 'GIKKGHL|K) . (6.4.29)
CGhd T o (j+1 k)
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If [I + §°(j|k)ﬁ'1<j[k)§°'(jlk)g(j+1|k)] has an inverse, then (6.%4.28),

(6.4.29) imply that

RGI0-DGI0-@ ' GIORGH I [5G [0R G105 GIRNRGH KT @ Gl 3
=0 . (6.4.30)
ol

Since g?(j!k), g?(j]k) can be arlitrary, (6.4.30) implies that the matrix

difference equation holds:

KGR =@ " Gl @G [K)-RGHTOB (3 [ (R G [0)+5° (50K G+1i05° G 10 -

"
lo |Im
lo lo

B2 GIORGH ) @ GG 3 Rk

[
=)
.
[=

(6.4.31)
<. . [66]
where we have usad the matrix identity:
@ +aB) =1 —a@ +307 5 ABey . (6.4.32)
e R “n =% -= = > 2= nr

The identity (6.4.32) is true provided one of the inverses exists. The

two point boundary problem is now transformed to the problem »>f finding a
solution of the matrix difference equation (6.4.31). The existence and
uniqueness of (6.4.24) to (6.4.26) and (6.4.8), (6.4.16) can be deduced
from the existence and uniqueness of_g(jlk), N 2 j 2k, satisfying (6.4.31).

The optimal open-loop control is given by: (N -1 2 j 2 k)
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P (LK) Gk
PG = G B2 Gl ... )J+g'(5+1)
8 Gk o Glx)

A7 G0E% GIRGHLK) [145° (5 lk)ﬁ‘l(j [05° (5[ WR (1] %) 7L

®@ Gl ...
- Le® Gl

cee (6.4.33)

r
Using (6.4.32) and also the matrix identity‘66]

I-aa+B t=3@+n™" (6.4.34)

(6.5.33) becomes (W - 12 j 2 k)

WG = ~G % GIORGHLIE G I ™0 GIRGH @ (k)

(s}

Gk LG iR
.l .
cee PR TGIRATGHED] .. (6.4.35)
EEIEY a® Gk

We have thus showz that if the solution of (€.4.31) exists and unique,
the open-loop optimal control must be given by (6.4.33); and the 0.L.7.0.
control is given by (6.3.41). We shall consider the question cf existence
and uniqueness of 0.L.F.0. control in the next secticn.

6.5 Existence and Uniqueness of O.L.F.0. Control

From equation (6.3.41), we see that if the optimzl open loop control
{uo(jfk)}ﬁ;i exists and is unique for 2all k=0, 1, ..., N - 1, we can
* -
conclude that the 0.L.F.0. control {u (k)}i=i exists and is unique. Ii the

solution of (6.3.33), i.e., the matrix g(j[k), exists and is unique, then

the control law given by (6.3.32) and (6.3.33) is the unique globally optimal
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open loop control. Since,ﬁ(jlk) iz an indefinite matrix, the solution of
(6.3.33),_&(j|k) (if it exists), is not necessary nonnegative definite; in
fact it is always indefinite. Therefore, we cannot a priori conclude that
ﬁ(jlk) +.E?‘(jik)g(j+l{k)§?(j]k) will always be nonzero, and thus deduce
chat.g(jlk) will remain bounded in finite time. In this section, we shall
establish the existence and uniqueness ot the solution of (6,3.33),_g(j;k),
for.the case where the terminal time is finite (N < =»); this result will
then be used to prove the existence and uniqueness of the O. L. F.O. control.
Let us define
%Gk
LG 10 =<27GI0REL G020 G0 L LG HRG R @0 k)2
o® (5 k) -
(6.5.1)
Lemma 6.5.1: If h(z]k) + B°' (2|I0R(e+1[k38°(2[Kk) is nonzero, % = j, j + 1,

eesy N - 1, then

2Glk 22k %% (5+1 k) 2° (541 1k)
LGl =<| ... » KGIv ... P>- , KGHjl ... s
® Gl Lo® (1K) 0 (j+1]Kk) o® (j+1{x)
(6.5.2)
Proof: Using (6.3.32), (6.3.33), (6.3.35), and (6.5.1), we have
2°(5 k) 2°G [0 2° (| kY
LGlr) =<| ... , DGl ... , @ "G IORGHKOB G k) -
a3 lK) Gl LGl

(RGO GORGH 0B G R G 1) G [)+5°" (G IOR G+ k) -

r2®(3]k)
B GIORGHIO® Gl ... |s (6.5.3)
B ®(i]K)
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By (6.54.35), (6.4.28}, and (6.4.31), equzation (6.5.3) becomes

£ 1o 2l el 2% (3+11K)]
LGl =<| ... L RG] ... P ... , KRG+ ... J>
a®(3ik) Glny LGy o° (+1]K)
{6.5.4)
temma 6.5.2: Tovalli=%k, k+1, ..., ¥ -1 we have
N-1 N-1
N\ .
er{E T (k) + E LGN = eefs@E GlR +E (83 + DRG) +
j=i j=i
=GN
2
20()<} ... |, 4G+ D>+ 0" ($)SG + DE G (6.5.5)

<Gl
where u(j), j =1, i + 1, ..., § - 1, is an arbitrary coentrol sequence and
x(§ X)
;(Jk)

is the resulting trajectory.

Proof: Using (6.3.28), we nave (H(N) & B)

er(GHDZ G+ = erfa’ DEGHDAGZ GIR+u@EGFDE G lK)+

RGHDRD+A20(DEGHDAGD L, G} 5 3 =1, 1 +#1, ..o, N -1 (6.5.6)
By applying (6.3.28) repexcedly, (6.5.6) yields
J
e (L)L (5411K)) = tr{g&(j,i)ﬂ(j+l)gA(j,i)§x(ifK)+ (24 G, 4+)U(5+1)
=i

&y 6] ,}.+l)§(2)+2u(i)2:x(j ,2+].)}j(j+l)9_A(j ,2,+l)_:_\_(2)f,_qb(?.}k)+u2(2)9_‘;x(j SR LW (§+1)

[IREI VPN EH O (6.5.7)




-209-

From (6.3.18), we have for all j < N - 1 that
N-
3(3) = 6, (N-1,5)F o, (N-1,3) + E 0, (t=1,5)R ()2, («-1,3) . (6.5.8)
=j
Summing {6.5.7) over j =i, i+ 1, ..., N -1, 2nd using (6.5.8) and (5.3.36).
we obtain (6.5.5) after a fair amount of straightforward manip.lation.

To describe the performance of the optimal open-loop control sequence,

we shall introduce the notion of "conditional open loop optimal cost to go."

Refinition 6.5.3: The conditional open-loop optimal cost to g0 for the de-

-erministic control problem, (6.3.26)-(6.3.31);

3} 1 EGI0, 26 0) & nin L s @hoF 2et+e svK)
u(i):j=i,...,N-1 °
N-1
+ ) I8 GIORGRG H0+er BHOIG G G)] (6.5.9)
=

where g(ilk), E(ilk) satisfy the set of equations (6.3.26}-(6.3.28).
o, . . . . . n
Note that Jlik\ »*) is defined as a function on J(2n)X(2n) x R'. From
(6.3.28), we see that £(jjk) 20, j =i, i+ 1, ..., N - 1, if and only if

Z(ilk) Z 0. Thus, from (6.5.9) we have
Ik(g %) 2 ifg20 . (6.5.10)

By lemma 6.5.1 and lemma 6.5.2 we immediately deduce:

Theorem 6.5.4: If h(g|k) + §F'(2|k)§(2+lik)§?(l!k) is nonzero, i =i, i + 1,

-+» N - 1, then the conditional open-loop optimal cost to 50 has the closed

<[J , KGR LL)>
j=i A ol

(6.5.11)

forn

=
/'\
3]
..
| >
N’
i
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where
T
“a 87 a8y
= T . = 3 = < . .’.
Ex Ll_n o1zl ... H Exb {}_n 0]z } 3 o : (6.5.12)
: L LEge,

We shall now wake use of (6.5.11) and (6.5.10) to establish the exis-

tence, uniqueness and boundedness of g_(j[k), I=k, k+1, ..., N~ 1;

k=0,1, ..., 8-1.

Lemma 6.5.5: Let G{3)B 6'(j) < B, forallB20, j=k, ..., N~2. Then

we have h(jjk) +§°‘(j§k)§(j+1§k)§°(j]:c) >0, 5 =k, eo., ¥~ 1.
Preof: If F 2 0, then since h(N - 1) > 0, we have

hO-1]k) 45 (-1 [R50 (-1 k) = h(N-1+er(z) (3-1]k/E)

+§°'(N~lik)£ _B_O(N"llk) >0 . (6.5.13)

Now assume that h(2]k) +§‘°(ka)g(2+l}k)§_°(£|k) >0 for £ =14, i+1, ...

¥ -1 (k <i). Considsr the special case: R(j) = 9, 3=k, ..., N; then,

by the induction hypothesis, theorem 6.5.4 and (6.5.10) imply that

Jggk(_f_(i—l!k) 8% -1k = r.r(_Z_:(i-l[k)_§(i))+§'°(i-—llk)g(i!k)ﬁo(i—llk) 2

20
(6.5.14)
where we have chosen
M2 (i-11k) Dz (i-1K)G! (i-1)
z(i-1'k) = 2
LEG-1)z, (1+11k) T 20 (1-11k)
£0 (i-11k) D g (=116 (1-1)
0 (6.5.15)
[G(i-1)Z) (i-1k) P BG-1E (-1 (1-1))
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and since h(i - 1) > 0, we have from £{6.3.37) that

h(i-1]k)+5°" (i-1]K)K (3| K)E° (A-1jk) = h(i-l)+J;lk (EE-1]k),5°G-1]K)) > 0 .

(6.5.16)

Thus the lemma is proved by induction.

We can now easily prove the existence and uniqueness of the solution of
= . N-1
(6.3.33), {5(J|k)}j=k, k=0,1, ..., N- 1.

Theorem 6.5.6:

(Existence and Uniqueness) Let B 2 G(j)B G'(3), j =0, ..
N -1 f.rall B20. The colution of (6.3.33), {E(jlk)}?;i, exists, is
unigue and is bounded, (N < =), if I (k|k), B (k[k), A(K), H(k), E N(k) and
h(k) are bounded, k=0, 1, ..., N~ 1.

Proof: The equation (6.3.33) can be written as a set of two equations (see

chapter 2, section 2.5)
KGl0 = (@ GIo-E°G oY G+10) RG+H T @ Glo-E° Gy, (3+1)

B0+ GHDRGIY (GH]K) 5 K@l =E 5 ]

k,k+1’ see ,N"l

k

0,1,...,N-1

(6.5.17)

VG = (G 04 GIRGH 0BG [0) B GIoRGH [0 @ G

- (6.5.18)
From (6.3.38), (6.3.40) and ~he assumption on boundedness, we have that
5°(3]k) and f(j]k) is bounded for j =k, k+ 11, ..., N-1; k=0, 1, ..
N - 1. By lemma 6.5.5 yo(j+l|k) exists, is unique and is bounded. The

assertion follows from the linearity of (6.5.18) and the fact that N < =,
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-1
=X

e
]

- - , Op .
Corollarey §.5.7: The oprimzl oper-loop coatrol, -u (i k) , exists,

Lae '.!‘.

=afigue 2nd8 if che assuopcions in Theorwex 6.3.6 are satisfied;

7
fi

* . *
ferehermore, E(x k.U (3,%-1)), Z(: k,T (0,5-1)), bk &,¥ (0,k-1)) are

boczdsd.

@

Theore= 6.5.8: Let B 2 G(3)B G'(5), i =0, %, ..., N-1, forall B 20,

fo

= (&), R(E), X&), GiX), ¥(k), afky, F are bounded, k=0, 1, ..., ¥ -1

*
ke 0.L.F.0. contrel, v (), Xk =0,

yut

ﬁ.

. ~=-3 X = 1, exists, is uvnigue and

Propf: We shall wsz imducsien on k. Khem k = 0, x(0°0) and b(0 ?) are

Zowm3ad aimoss sureir; 2lso Z(0 9) is bounded; thws b~ corollary 6.5.7,
[ - - - . s . % -
oo (D 0) exiscs, is wmigue and is bewadad a.s. By (5.3.31), u (0) exists,
is uniqua sad is bowadad. Assume the statezent of the cheorex is tree for
=0, ..c, 13 £ <X~ 1. By the assuxptions and tha iaducrion hycothestis,
%
the ifsnrificarion eguacicas, {6.3.19)-(6.3.23), imply that Qi+l FL,U (0,:))
- - .* - - -— - N - .s - -
and B(F1 +#1,T (0,4)) are bornded 2.S., aad thar Z(iFl L1 (0,4)) is

. . = - = - G I . . <
doumcéad, thus corollary 6.3.7 implies that o (%1 i+l) exists, is unique

2nd is bounded a.s.; by (6-3.41) rhe asserticn of the theozex holds Zor
* bd - -
e (), k=01, ..., L+ %,

Oae would like to extené the resuits tc che infinite time case with

X - =. Unfortupacely, tiis is seldonly possitle. Fron (6.3.39), we note

(2]

thac if we let X - =, S(j) will renain bounded if and only if A(k) is ex-
ponentialiy stable; thus, the solution of (6.3.33), K(3 %), with N » = will
not be =eaningful unless A(k) is asycptotically stable. In maay cases of

interest, the systea te be controlled is unstable. Therefore, we shall not

investigate the solution of (6.3.33) with X ~ =.
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6.6 Asynmptotic Behavior of the Identifier

In this section, we shall study tiie asymptotic behavior of the identi-

fication equations. The results will allow us to consider the problem of

ceatrolling the system § over an infinite time interval (N - =}.

Definition 6.6.1: {(é(k),.g(k))}:=0 is said to be completely observable

of index v at k if the observation matrix

=A

M, ov) = 000 D gllk,RICT(k + 1) DLl D gk + v - 2,k0€" (K

+‘J-l)]

(6.6.1)

is of full rank n. {Qé(k)lg(k))}:=o is said to be vuniforuly completely

observable of index v if the pair is completely cbservable cf index v for

all k=6, 1, ... .

Theoren 6.6.2: Let {(i(k)lg(k))}z;o be uniformly completely observable of

index v, and supposz that A(k), G(k) are nonsingular, k = 0, 1, ... . If

ulk) # 0, k=0, 1, ..., then {(é(k,u(k)),éﬂk)}:=o is uniformly completely

abservable of index v', »' £ 2v.

Proof: By (6.3.17) and (6.3.20), we have

[C(k) o
€t g, (c,k) D C(ktl)ulk)
3,2 = : kg3

. =k .

: k4+2v-2 *
Ck+2v-1)3, (k+2v-2,k) 1 3 C(k+2v-1)
: © =k

A

g(k+j)_9:A(k+j—l,k) : > §§k+j)_gA(k+j-1,z+1)u(z)gG(z-l,k)

(k+2v-2,2+1)u(8) 9% (9.-1,k)j

(6.6.2)

By assumption, the first mv rows of vectors contains at leas: n independent

vectors. Among the rows vectors C(k + v + j)QA(k + v+ 3j-1,k), let
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k+v+ e, (+v+j- 1,k), ... 5; (k +v + j)gﬁ(k + v+ 3~ 1,k),

cl
"93-(1) j("j)

be the vj vectors which are independent of the row vectors:
Ck + vlgA(k +v-1k), Ck +v - l)gA(k +v,K), ... Ck+v+j-1)

Eﬁ(k +v+3i-2,k), =1, ...y v- 1; where

Ei(k+“ + 3)
Ck+v+3)= (6.6.3)

Eé(k + v+ i)

and cj(-) is some permntation of {1, 2, ..., m}. Since fQﬁ(k),g(k))}Z=0
is uniformly completely observable of index v, 1t 51lous that vy # 0,

i=1, ..., v-1, and tiat

m+ vy + vy + ... Vool =n . (6.6.4)
Assume that we have the dependence
wtj-1

] 3 ) A et k = 1/ N . s ) . < i . . .-

gpj(s)(k+1+3)2A(k+,+J 1,k) E 31(3,5)g(k+1)gﬁ(k+1 1,k); 1Zs 2 (6.6.5)

where the only possible nonzero entiles of gi(j,s), i=0, ..., v+j -1, are

those corresponding to independent rows of Ck + i)gﬁ(k +i-1,k), i=20,
eeey V+ j - 1. If there exicts no gi(j,s), i=0, ..., v+ j -1, which

bears the relation (6.6.5), then the (m(v + j - 1) + o(s))th row vector of
gé’é(k,Zv) is independent of the first m(v + j - 1) row vectors. If there
exists gi(j,s), i=0, ..., v+ j - 1 which gives the dependence (6.6.5),

then such a dependence is unique by construction. ©Now assume that the

(m(. + j - 1) + 2(s))th row vector of Mi é(k,Zv) is dependern” on the first

m(, + j - 1) row vectors, then we must also have the dependence
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ktv+i-1
Z €, () (VIS (trti=1, D w) 3 (2-1,k) =
2=k
vij-1 kts-1
S:_q;(j,s)z Click)g, (ti-1,241)u(R)g,(2-1,k) . (6.6.6)

i=1 =k
Since A(k) is nonsingular, by (6.6.5) we have
r+j-1 ktvij-1

172 A veded e . - =
E .gi(J,s)g(k+i;gA(k+1 ],£+l)u(2)gc(2 1,k) Qn (6.6.7)
i=0  f=k+i

where

v, 0,5) = A @WATE YD At @ s i3 . (6.6.8)

Since {(é(k)tg(k))}:=o is uniformly completely cbservable, the vector

&3 Gas) & [l Gh8) oen T al(Ges)] (6.6.9)

cannot be the zero row vector, s =1, ..., vj. 3y assumptioa G(k) is

nonsingular, therefore (6.6.7) is true if and only if u(k + i)

0, i=20,

l, ..., j which is a contradiction. This result applies for s =1, ..., v.3}

j =01, ..., v-1, Together with (6.6.4) and the remark made at the
beginning of the proof, we have that yi é(k,Zv) will have rank 2n if
u(k +i) # 0, i =0, 1, ..., v - 1. The theorem follows from the assumption

that uk) # 0, k=0, 1, ... .

Coxollary 6.6.3: Let A(k), G(k) be bounded and nonsingular. If

{(g(k),g(k))}:=0 is uniformly completely observable of index v, the error

covariance matrix,_g(klk,U(O,k—l)) which satisfies (6.3.21) to (6.3.23), will

remain bounded for all k = 0, 1, ... where u(k) is any bounded but nonzero

control for all k =0, 1, ...




-216-

E Lemma 6.6.4: Suppose that G(k) satisfies
3 —_—

-

GK)BG'(k)SB ; BeM , B2O0 . (6.6.10)

Let Y{k) £ 0, i.e., there is no driving noise in gain dynamics; thean for

any control sequence, we have

et

I, (LI, 0(0,k)) < I, (k[k,U(0,5)) . (6.6.11)
Proof: From (6.3.23) and (6.2.21), since N(k} = 0, we have

*
- = - - A\l Y100 3} f
Ei (k+1lk+l,U(0,k)) G(k)Z! (k!k,U(O,k 1)G' (k) [0:1 v (k+1|k,Ui0,k))

\ 0
(C(k+1)A(k}%,0(0,k))C’ (k+1)+g(k+1))y_*' (&+1]k,U(0,k))} . ] (6.6.12)
I
%*
where V (k+1|k,U(0,k)) satisfies (6.3.201)-{6.3.23), using (6.6.10), (6.6.11)
follows immediately from (6.6.12).

An immediate consequence of lemma 6.6.4 is that if (6.6.10) is true and

y(k) = 0, then there exists Z_b such that

lim £, (k|k,U(0,k - 1)) = £ . (6.6.13)
o D ’ b

-]

Note that (6.6.13) is true independent of the observability of {(A(k) ,g(k))}k:O.

In the following theorem, we shall give sufficient conditions under which
'_Zb = 0.
Theorem 6.6.5: Let y(k) = 0, A(k), G(k) be bounded and nonsingular and

G(k) satisfies (6.6.10), k = 0, 1, ... . If {(A(k) ,_(_Z(k))}:=0 is uniformly
completely observable of index v and u(k) is any bounded but nonzero control

for k=0, 1, ..., then

lim gb(klk,U(O,k -1))=0 . (6.6.14)

k-
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Proof: Let € > 0 suc. that

s
™

H £ (k+2v | k+2v,U(0,k+2v-1)) - _Z_b(klk,U(O,k-l))i ] (6.6.15)

shere ||+|| is the spectral norm. Since gb(k!k,U(O,k—l)) 20,k=0,1,

eees (6.6.11) and (6.6.15) imply that we have the inequality
sz(k+jlk+j,0(0,k+j-l) - ;:b(k+j—1|k+j-1,u(o,k+j-2)1l S
jJ=1,2, coey 20 . (6.6.16)
Using equation (6.6.12), we have

. * . .= ~
e 2 JI0:L IV (ktj [ieti=1,800,k45-1) - (E (et ) & (i1 [ k45 -1, (0, k+j-1) s

&' (kH)) + QUHIY T (it [ict§=1, U0, k§~1)) (6.6.17)

By corollary (6.6.3), C(k+j)A(k+j-1]k+j~1,0{0,k+j-1))C" (k+j) + Q(k+j) can

be uniformly bounded, so

. . . ) L]
|1 (CkH9) B (k-1 |ieb§=1, U0, k+-1) ) CXk+§)4QCk+§ )V * (k5 kt5-1,U(0, ktj-1)) 1 s
1
1
[1(E (k+3) B (k-1 k5 -1, (0, kb -1) EXk+5)+Q ot )2 |- || (B (et )A (k+j~1]k+j-1,L(0,k+j~D)
L 0
-~ * -—
C' (k+§)4HQ(k+i )V (k+j|ktj=1,U(0,k+j-1) )L] H
I
<c, Vel 5 () J=1, 2, vouy 2v (6.6.18)

. h| 3

Gj(e) is continuous in ¢ and éj(e) +0asec~>0,j=1, ..., v. Using

(6.3.21), (6.6.18) can also be written as follows




:f_li_'(k‘-‘j)i\_(k-?j-l);_\ib(k-i-j-llk—:—j—l,’s(ﬁ,k-i-j-Z})g' Ge+j-1)+u(k+j-1)C (k+i)-

gb(k+j-1%1»:+j-1,u(o,k+j-3)g' (k+5-1301 < 53. )

$=1, ceuy 20 . (6.6.19)

* - -
Sunce V {k+jlk+j-1,U(0,k#j-1)) is bounded for j = 1, ..., theresore

(6.6.17) and (6.3.21) izmply rhat

—y
-

0
* - -~
3 (051 1V (k+i !*.-a»j-l,u(o,k«x-j-n)g(k+j)_a-_(k+j-1§k+j-1,uqo,k+j-1))[_.“
h b 1

* N ~ . ,
HHL S0IV (et {kt§-1,B(0,k+5-1))C (k5 A (¥i-1{k45-1,0(0,k+j=1))f ... ¥

<

) {(6.6.21)

3

5¢

where 5i(s) is continuous in =, Ei(s) +Qase-+0,i=1,2, ... . By using
(6.3.23), (6.6.20) and (6.6.21) and the assumption that G(k) is nonsingular,

the inequality (6.6.19) icplies

Lo (x#+1{k+1,C(0,¥)
L[C(k+L I 6] Il < £() {6.6.22)
¥, (kHl{k+1,8(0,%)
k+j-1
i i - Ci{k+3 Ldj~1 . % L} -
”Lg(k-l-_])_é_A(k-i-J l,k-l-l):gu\-!j) E -EA(:’.‘PJ 1,L+l)U(L)_:_G(L l,k-!-l)]
2=kt
Z, b(k+llk+1,8(0,k))
P £ ()
3

I, (k+1}k+1,3(0,k)

j = 2’ 31 ceey 2v (6.6.23)
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T where fi(s) is continuous in g, fi(s) +0ase-0,i=1, 2, ..., 2v.
Equations (6.6.22) and (6.6.23) imply
£ (kHL fe+1,U(0,k)

Ilﬁg’e(k+1=2“) i
£, (k+1]k+1,0(0,k))

in

f(e) (€.6.24)

T ——

where £(g) — O when ¢ -~ 0 and is continuous in €. By theorem 6.6.2,

] gi é(k + 1,2%) is of full rack, so we have
- b
! ll;xb(k+1]k+l,0(0,k))I! < 8'(2) 8'(z) 0 asc-~0 (6.6.25)
:
HE GHLik+l, e, kN (] £ 8"¢) ") -0 ase-0 . (6.6.26)

1 - Now the conclusion of the theorem follows from {6.6.13).

. Theorem 6.6.5 can be extended to the case where u(k) is bounded but
y nonzero control for all but a finite number of k's. Since Z(klk,U(0,k-1)) 2 0,
; (6.6.14) also implies

‘ lim £ (k]k,U(0,k-1)) ~ 0 (6.6.27)
b ke
8 if the conditions for theorem 6.6.5 hold.
F:

Let us consider an cbservable svstem 8, (6.2.1), the gain parameters
are assumed to be unknown and satisfy

) b(h + 1) = G(k)b(k) (6.6.28)

. with G(k) satisfying (6.6.10). Assume that we want to control the system S
E . over an interval N < =. 1In the beginning, the modified weighting on the

! control is kigh, and thus in general, the control magnitude will be low at

A

S At s 4 ot
’ R e e




the beginning. Thus, the tra‘ectory of the overall contrel system would
be pretty much the same as the input-free trajectory of the system 8§. If
the matrix A(k) is exponentially stable, the true state of the system will

evolve toward zero by using negligibly small coatrol magnitudes (even zero).

N-1
k=0

and identification purposes. We would expect thac the estimated parameters

The result is that little effort cf the input, {u(k); is spent for control
will hardly converge to the true parametexs, b(k). On the other hand if
A(k) is not exponentiaily stable, then the true state of the overall system
will diverge. This diverging phenomenon will be noticed by the identifier,
thus resulting in a high control magnitude because of (6.3.32). Since
Zittle is initially known about the gain parameters, the high magnitude con-
trol will be utilized mainly for identification purposes. Therefore the
control will be kept bounded away from zero as long as exact identification
of b(k) has not been obtained. Using theorem 6.6.5, we predict that the
estimated paraneters of b(k) will converge to the true gain parameters
before the control magnitude goes to zero.

Analytica: studies of the convergence rate of the 0.L.F.0. system are

not yet available. From the above discussion, we may predict roughly that

the convergence-rate for unstable system will be relativelv fast depending

on "how stable" the system is; and the convergence-rate for stable systew

will be very slow.

For control over an infinite time period, see section 6.7(C)} for de-
tailed discussions.
Finally, we shall discuss svme interesting implications of theorem

6.6.5. Consider an observable system 8, (6.2.1), with unknown gain

o eteame
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parameters satisfying (6.6.28) and with G(k) satisfies (6.6.10). Let
_c_k(g(ktk,g(klk) ,gb(klk,U(o,k-l)) be any ad-hcc control law which is “put"

after the identifier (see Figure 6.4) and with the following properties

(k 2 0):
n
D 2 () R XK x  ~R
2) & (xbE)#0, xeR,beR,ZeM ,x#0;L#0
D 5 (52,0 = ~(h(Hb' (KB B’ (EGHDAKE 5
X £ Rp, be R

From condition 2, we see that gb(k]k,u(o,k—l)) -0as k » = (6.6.14); and
so irom condition 3, the ad-hoc control scheme will converge to the optimal
contrel strategy when the full dynamics become known. This indicaces thar

the ad-hoc scheme (i(k{k),§ﬁk]k),§b(k|k,u(0,k-1)) can provide reasonable

5 (&

simulatiorn results.

6.7 General Discussion

In this chapter, we investigated the problem of identification and
control of discrete linear systems with unknown gain from the theoretical
standpoint. The con:irol is open-loop feedback optimal. The implementation
of such a control (0.L.F.0. control) was described to some detail. The
actual implementation for O0.L.F.0. contrel for third-order systems will be
discussed in more detail in chapter 7. As we shall see later, such a
proposed scheme appears to be computationally feasible and that the results
are reasonable and appealing. A deeper theoretical understanding of the
dzrived O.L.F.0. control is possible from the results in sections 6.4 and
6.5. The questions of existence, uniqueness of G.L.F.0. control are con-
sidered in great detail. The asymptotic behavior ¢f such contrel systems
was treated in section 6.6; some of its extensions will be discussed later

in this secticn.
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(A) Discussion on Approaches

The problem of <~ombining identification and control of linear system
vith unknown gain have been consideved by several people. Farisan [60]
considered an ad-hoc procedure which basically assumes the sgeparation be-
tween identification and control. Murphy [61) censidered the approximate
effect of iteration betwz2en contrnl and ideatification and he pre-supposed
that the control was a pure feedback of the estimated srates. Gorman and
Zaborszky [62] used a similar approach to that of Murphy and obtzined a
suboptimal control which required the solution of a seguence of two point
boundary value problens. Essentially, [6l] and [62] are approximately
Bellman's equaticn. The apprecach taken in this chapter is different from
those in [60), [61], and [62].

Bar-Shalowm and Sivanf [63} also used the O.L.F.0. control approach to
consider control problems with random parameters. They derived a general
solution but made no attempt to study atalytically the derived results. The
approach taken in this chapter is primarcily motivated by computational
feasibility

From the discussion made at tbz end cf section 6.6, we can see why
different computation schemes sujpgested by Farison, Murphy, Gorman and
Zaborizky will all be expected to give reasonable siwmulation results. It
is hard to quantitatively compare our zpproach with theirs without extensive

simulation experiments. One computztion advantage of our results over those

"This reference was brought to the author's attention when most of the
theoretical work of this chapter (sections 6.2 to 6.5) had been completed.

et e At e e
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we replace a sSequence of Two point

(2l

of Yurphr, Gorzan and Zaherssky is tha

zatrix Riccazi (ype diifereace

"y

bowndary prodlexs by solving a sz2gren

8

o
equazion of dimension (n # 1)a x (o + 1)z, {6.3.33). This matcix Riccaei
differeace eguvatica is solved backw=rd in tinme starting frow the rerminzl
tizk to the presazt tim= k; j.e., 23 X — K s¥eps computacien, where k = 6,

s = 3 — 1. Coopuraticazl wise, this is easier than soliving 2 two poink

[

beundary prodlem. Im our 2pprozch, the theoreticzl proof on the existexce
and vniguexass of Q.L.F¥.0. coatrxel sequence is availadble; this gives us
ccafidence in trying oot the svboptimal conrrol scheme w=sing a digitzl
cozputer. Also, we can daduce and predict rougnly the behavier of the over-—
all 0.1L..F.0. cuncrel systex {section £.6) from the derived egquazicas (secticn

6.3).

(B) VYector Tentrol

o our investigaticna, we assumad thac the conrrol is scalar. However,
tke approach can b2 extendad in 2 strzightiorward coaceptuzl =anzer to che
wvecter ccntrol case. TFirst, 2 ser of identification equaticn is derived
which will zenerate the estinzte of the curreat state, the curreat estizage
cf the unknown gain =a2trix and the different cross-error—covariance —ztrices.
an open-lecop contrel problex is foroulzted as ia section 6.3, eguations
(6.3.20) to (6.3.31) and discrete Datrix miniou= principle is used to obtain
the extrezal solution. The results will be similar to those of scalar con-
trol case. However, the equations in the vec .or control case will be more
complicated.

{C) Control! Over Infinite Interval

Let us consider che problem of controlling the system S, which is time

invariant and unknown constant gain b, over an infinite interval, i.e., N » =,
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Iz was pointed out (in secticn 6.3) that che problem will nct be very
seaningful in =any cases if we just consider the obtained results (secticn

&.3) an2d lec X ~ =. ¥e suvggest the window-shiifting approach. Assuze that

a2t all times, we have X oore steps to centroi (see Figure £.5), thus at a2ll
zizes we solve 2a apen-100p cocntrol problem over ap interval of N steps.
This cpproach is ootivated by coxputztiona2l conrsiderztion ané the theoretical
resulets éerived ia secrion 6.6.
We note that in the 9.L.F.0. approach, we have to resolve the cpen-loop

nrro) prodlex at a2ll time k so as to adjust the conrrol scheze accordingly.
in our case, we have te co-pute gﬁk kJ in a baclward direction starting from
the rerminal time Y o k for each k. If XN is very large, this cczputation
will reguire a very icng tige to accozplish. From a cocputaticnzl stand-
point, wz would like to "cut back" the rerxminal ticme. Conceptually, in
gryving to coatrol ovar ar infinite tice period, the controller looks into
all furure eifects cavsad by present action, and decides oa the optinup
—ove. The window-shifting approach suggests that instead ci looking at ali
furure eifects, the controller looks at only near future effects caused by
present actioas and decides on suboptimal moves. One may view such an
approach zs a "short term adaptive scheme." Note also that we can adjust the
"window widtn" according ro computational capability. At all times, we need
oanly to solve for K(kik) in a backward direction starting from N + k to k.
Thus from a conceptual and a computational point of view, such an approach
@ay be desirable.

Asswze that the time invariant system 8 being controlled is observable

and controllable. If b is known exactly, then if we consider control over

infinite time period, the optimal feedback gain is constant and is given by
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1

¢=-(h+Db'Kb) b'KaA (6.7.1)

|=

where K is given by the steady sta!= solution of

K. ., =aA'"(K. - K.b(h + b’K.b)
a' (K, - Kb b

|o*
—
4
b
I

F (6.7.2)
(see chapters 3 and 4). Let N be the integer such that for n 2 ¥,
'K - K 1 2 ¢ 3 e >0 . (6.7.3)
“n

Such an irteger N can be found experimentally off-line. Adjust the window
width to equal to N, and apply the window-shifting approach. Add some
nonzero contxol for identification purpose if it is necessary (see also
chapter 7). Using the results in section 6.5, the existence and uniaueness
of such control sequence is guaranteed. By theorem 6.6.5, the estimate in
b will converge asymptotically, and so when §ﬁklk,U*(0,k - 1) - b, we have
L(k,N+k;F)» © O

R(klk) -
[} -0

where K(k,N + k;F) satisfies
K(k,NHGE) = AT (K(kHLN4GE) = K(HLNHGE)b(h + bR (kL ,¥+k;E)b) "L

D'K(kt+l,M4k;F))A + W 5 K(W+k,N+k3F) = F (6.7.4)

and

* - ~
u (k{K) > 0()2°(k k) = =(h + b'K(k,N+k;D)B) b K (k, kDA 20k k) (6.7.5)

(See discussion at the end of section 6.3.) Comparing (6.7.2) and (6.7.4),

we note that
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K(k,NHGE) = Ko = K . (6.7.6)

Thus asymptotically, we have a time invariant overall control system.

(D) Convergence-Rate

We have not studied in detail (analytically) the convergeace-rate
of the suboptimal O.L.F.0. control system. We can only deduce and predict
some rough qualitative estimates about convergence-rate for stable and un-
stable systems. We shall study the question of convergence-rate via simula-

tions; some conclusions and discussion will be included in the next chapter.

(E) Conditions for ConvergenceT

From theorem 6.6.5, we note that if y(k) = 0, the sufficient conditions
for convergence are observability, nonzero control and (6.6.10). The first

two conditions are relatively easy to understand and intuitively appealing.

The third conditicn needs some explanation.

Suppose that G(k) satisfies (6.6.10); then by taking B = l‘n’ we have

G(k)G' (k) < 1 . (6.7.7)

Thus, we have

Hlew)|] =1 (6.7.8)

where |]+|] is tne spectral norm. Equation (6.7.8) provides us with the

necessary condition for (6.6.10) to hold. Intuitively, (6.7.8) means that

tne uncertainty of b(k) cannot grow.

Let G(k) be an nxn matrix such that

GK)X £ x e RY . (6.7.9)

A
| %

—This discussicn was motivated from a suggestion made by Prof. J. C. Willems.
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(6.7.9) iomplies

G{k)DD'G" (k) < DB’ (6.7.10

and so G(k) satisfies (6.6.10). Thus (6.7.9) provides 2 sufficiency rest

for (6.6.iC). Geomerrically, (6.7.9) implies that G(k} is a linear traasfor-

mation which is directionzally invariamt but shrinking or retaining the

length of each vector. S5oze wezker sufficiency tests which have so==

l¢:

physical interpretations will be 2xplored in future research efforts.

-

(F) Differeat Cost Criterion

The approach can be applied zo the more general case where 2 cost
criterion other than quadratic is being considered. The identification
equations remain unchanged bat the open-locp control problem thus forou-
lated will be different from (5.3.26)-{6.3.31). By using the discrete
matrix minimum principle, we shzall obrain a set of equations which define
a two point boundary values croblem.

6.8 Perspective

The problem of stochastic control of linear systems with urkaown gain
was also treated by Florentin [64], Farison [60], Murphy [61], Gorman and
Zaborszky [62]. The approach in [61]-[64] is that of approximating the
solution of Bellman's equation. [60] presuppose separation.

Open-lcop feedback controller was described by Drevfus [26}. Open-

loop feedback optimal control approach was also used by Bar-Shalom and

Sivan [63] in considering control of discrete-time linear systems with random

parameters.

)

O e
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To the aacthor's knowledge, for this particular problea of controiiing
linear systexz with unkaown gain, the investigations in sections 6.5 znd 6.6
represent the firet extensive zmalyticzl stuédies on the derived suboptizal
solution. The contributions being that 2 plausible cocpurationally feasible
suboptizal solution is derived using the 0.L.F.D. approach, exténsive
anaiytical studiss on the derivad solution are carried our, a2ad fro= the
cderived resulis so=e rough behavior of the overall suboptizmal centrel
systex can be deduced; also we have a deeper understanding on the effacts

(qualitarively) of uncertainties on the coatrol action.
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CBAPTER VII

COXTROL CF THIRD ORDER SYSTEMS WITH UNKNOWN ZERSES:
XI2MERICAL EXAMPLES

In the last chapter, ve have studied theoretically the problen of
contral of a discrete time linear system with unknown gain under the
guadratic cricerion. A subopticazl adaptive control systen was derived
using the 0.L.F7.0. approach, and the asymptotic behavior of the control

systec was discussed. There are still sczme important guestioas which have
not been treated theoretically. For example, the rzte of convergence of the
suboptical control system is in gemeral of great interest, but was not
¢treated 1in detail. <Jooputer studies were carried out on some sweciiic
exzoples of third order systens. The main purpose for these studies is to
provide us with some qualitative ideas about the rate of coavergence of

the suboptimal control systex for different types of third order plants.

Let us consider a stochastic continuous tirce-invariant linear systen

described by:

R (0) = A x (2] + b v (e) +4d. 5.(0) 5 x(0) ~ G(o, £ .5
¥:(0) = &' x () + 7 (e) b~ GG, 5 )

where Ef(t) is a scalar driviag white Gaussian noise, nf(t) is the
scalar observation white Gaussian noise. The statistical laws of §f(t)

and nf(c) are assumed to be known:

t, t

2 2
f ;f(t)dt A Q(O, / r dt) (7.2)
& Y
£ £
[ nac~glo, I qa) (7.3)
Y Yy

o s i
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From (7.1), we have
At t A (t-1) t A(t~1)
~ _ ¢ i~ G . 3¢ N
.\f(t) = e :\Ef(O) + i e Efuf('.) dt + !0 r ifgf(n)d. (7.4)

0
Assume that we take cbservations only at discrete iastants of ¢ime t = 4,

23, 33 ...; & is assumed to be small such that u(t) = u(ka), £(t) = g(ka),

t ¢ [ka, (k+1)2]:

Ad A_(kA) ka §_(ka - 1)
s A e 3 £ _
Xe (k+1)a = e [e g:.f(O) + IO e k_f uf(r)d;

ks A (kd - 1)
+ [0 e " gf :’,f(r)dt]
A éfo 4 4

Ao
+fgetds - ou () + [oeldo -d g (8 (1.5)

Defining
Al 8 A.c
) = A —f .
x®) =x.(k8) ; A=e ;s b %e do ° b
2 éfc (7.6)
d= foe do -dp 5 8 =g.(ka) ; uk) = u (xa)

(7.3) becomes

x(k#l) = A x(k) + bu(k) +dg (K ; x(0) ~ G, £ ) (7.7)
Defining
vk} = y,(ka) ; n(k) = n.(ka) (7.8)
The observation seguence is
y(k) = c¢’x(k) + n(k) (7.9)
The statistical laws of ¢£(k}), n(k) are
(k) ~ G(O, ra) (7.10)
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n(k) v~ G(0, qb) (7.11)

The gain vector is assumed to be unknown but constant, therefore the

equation for the unknown gain is

b(k+1) = b(k) ; b(0) » Gk ,

- o

) (7.12)

J_M

0

We can now apply the results in chapter 6 to equations (7.6), (7.9), (7.10)-

(7.12).
A computer progran was designed which operates as follows:

(1) Read in éf, 2{’ <, gf, r, Q5 5 X, Eo’ the fipnal time N and
the different weightings W, h, F, and covariances Exo’ zbo'

(2) A subroutine, which was developed by Levis [75], was used to
convert the continuous version, (7.1), to the discrete tirme
sample data version {(7.6). The covariances of £(k), n(k} are
computed using (7.10), (7.11).

(3) The true value of x(k) was recorded. Using a noise generating
subroutine, a sample value of y(k) was obtained., Assume that
R(k-1/k-1), B(k-1/k-1) are recorded. A subroutine for the
identification equations (6.3,19)-(6.3.23) was used to obtain the
current estimates 2R(k/k), Bb(k/k), and the error covariance
catrix EI(k/k) recursively. These values ware also recorded.

(4) A subroutine based on (6.3.32)-(6.3.41) was nsed to obtain the
adaptive control u*(k).

(5) The conirol u*{k) was applied to the system (7.6), using a
noise generating device to obtain a sample value of £(k); then
by (7.6), we obtained the value x(xtl).

(6) We advance k - k+l and repeat (3) through (5) until we get to

the final time k = N-1.
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The program was written in such a way that if we set b(k/k) = b, and

o = C, then the procedures (3) through (6) will give us the truly optimal

stochastic control when b is known. Using a piotting subroutine we can

plot out the truly optimal trzjectories vs. the 0.L.F.0. trajectories; the
true b vs. the estimated b, and optimal feedback gain vs. adaptive gain
(it was noted that the adaptive correction term will converge to zero quite
fast), under tne requirement that the same noise samples (£(k), n(k)) were

used for both the known b and unknown b cases. These plots provide us

with qualitative understanding on the rate of convergence of the cverall
stboptimal O0.L.F.0. control system.

In 211 the computer simulations, unless otherwise mentioned, we set

the values:

1 1
0.2 sec, r =0.05, q = 0.45, Qf = [z] » X, = [1} ,
. ! (7.13)

Eelp Wolp B, 5,mtlp &t 000)

(=3
L]

Example 1: Unstable System

It is assumed that

0 1 o} [1]
A, =10 0 1] b, = |2
= s34 < 3

such a system has a transfer function (see Fig. 7.1)

LX)
]
[
X ]
'_LM
~~
[ewd
-
1]
v ] )
&=
~~
-
.
=
o
L

H(s) = (s +3)(s + 2)

5 (7.15)
(- 1){s” + 25 + s)

so that it has an unstable pole at s = 1. Initially, we set

. 0
_bf(0/0) = [(:] (7.16)
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i.e. we started out with an initial guess that the system has no zeroes.
The final time is N = 40.

Many computer runs have been made on the same system with different
noise samples. The plots for ome particular sample experiment, which
represents a fairly good average behavior, are shown in Figs. 7.2~7.4.
From the experimental data (which are not shown completely), we can obtain
a vough idea about the behavior of the suboptimal 0.L.F.0. control system.

From the experimentg, it was found that in the beginning, the O.L.F.0.

adaptive gain is approximately zero (Fig. 7.4) and the O.L.F.0. trajectory

follows closely to the input-free trajectory (Fig. 7.2). The diverging

phenomenon is detected by the identifier; controls of comsiderably high

magnitude are then applied for a few steps. This is indicated by the fact

that there are sharp jumps in the state trajectories. Experiments show
that these jumps are not caused by bad noise sample because the same
phenommenon appears in different sample runs at approximately the same time

interval. The high magnitude control serves mainly for identification

urposes, this is revealed by the fact that at the next time unit, the
estimates of b closely agree with the true b (Fig. 7.3). As was

predicted in chapter 6, sectiom 6.3, the 0.L.F.0. adaptive gains do con-

verge to the truly optimum gains (Fig. 7.3). The correction term vs. time

is not shown in the figure, but simulation results indicate that the
correction term goes to zero very rapidly after the identification of b
is essentially completed.

Another set of simulation experiments was carried out where we kept
the same sample noise but varied the weighting h, (h > 0). It was found
from the experiments (not reported in here) that the maximum magnitude of

the overshoot in the 0.L.F.0. trajectories varied inversely with the value

N




Q% Y

ke G 13

SLEAIL K0 L i DI

P

h
3
3

1 i _ oo 2 e

T e

L)

7

g N

T LR

3uped €3

e RT

(it

S tut i

TR M Ty

.o

-246~

f h was large. we have relatively "lower" overshoouts; wherezs, if

1 .0

of h;
h was small, we had relatively high overshocts. Also, the experiments seem

to indicate that the convergence rate and the final estimation error in b

relative~

seem to depend on the value of h we chese; with large h, we have

ly siow convergence rate and relatively big final estimation error in b;

if h 1is small, we have a relatively fast convergence rate and relatively

small final estiration error im b.

In the next set of experiments, we kept the weighting fixed (h = 0.1),

and repeated the first set of experiments with larger driving noise co-

variance (r = §.45) while using the same observation noise sample. The

experimental results (not reporred in here) seem vo indicate that the in-

crease in driving noise covariance has little effect on the convergence

rate of the 0.L.F.0. control system.

it is of interest to find out whether the initial guess on bf will

be sensitive to the resulting 0.L.F.0. contreol system. We carried out a

set of experiments where we fixed

o‘| 0 1 O
bo=10 3 A, = 10 0 1 (7.17)
N Y < 5 3 A
The transfer function is
-1 (7.18)

H‘(s) = —
1 (s - l)(52 + 2s + s)

The initial condition on 55(0) was kept fixed, and using the same sample

The same runs seem to indicate

noise, we varied our initial guess in Dg-

that though the sample O.L.F.0. trajectory varied with different initial

guesses in b_; the convergence rate was quite insensitive to the guess in
4

b,.

——
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Example 2: Stable Systen

It is assumed that

} 0 1 o]
| A, = ¢c 0 1
: = -5 -7 -

The true transfer function for the system is (Fig. 7.1)

e
']ha‘
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o
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Naar?

i
=T
0N W oy

~~~

N ]
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O

L4

_ (s + 3;(5 + 2) (7.20)
ts + (" +2s + 5)

H_,_(s) =

The system is stable.

In the first set of experiments, we initially guess

. 2
: bf(OIO) = [1] (7.21)
. - -6,
i.e. that the zerces are located at - %-+-~/:%2 and --% - :%2 . The

weighting on the control is h = 1. We take the final time X = 40.

Sample runs for the same system with same initial guess (7.21) were

é vade and the plots for one particular sample are shown in Figs. 7.5-7.7.

f As opposed tc the unstable case, the O. L. F.(). adaptive gain is some nonzero
i vector, and so the value of the 0.L.F.0. contiol is not zero at the

? beginning (Fig. 7.7). The control is used beth for identification and

E control purposes. The system is stable, and since no large magnitude

control is applied, the 0.L.F.0. trajectory decays down to zero (see

Fig. 7.5). This decaying phenomenon is ncticed by the identifier, and

Tont

TR

thus the control is kept near zero to save energy. Therefore, after a

certain time interval, wvhen the 0.L.F.0. trajectory goes near the origin,

the 0,L.F.0. control will remain zero for most of the time. The system

T T

B

behaves almost like an input-free system. In fact, this is also what the

S

4 [Pe——
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truly opticum system will do. We note from Fig. 7.6 thar the identification
process of the unknown gain b stops at about k = 20, which is the
approximate time unit when the 0.L.F.0. state trajectory begins to stay

around zero. JIf we consider comntrol over an infinite interval (say using z

window-shifting approach) we may expect awfully slow ccnvergence rate in the

estimation of b to the true b, and a slow convergence rate of 0.L.F.0.

control system to truly optimum control system.

in the second set of experiments, wa have the sace noise samples as

pefore but starting with the init’zl condition

2
x.(0) = |1 (7.22)
- 4
The initial guess on Db was
- 0
Ef(OIO) 0 (7.23)
-2

i.e. there are no zeroes. The weighting on the control is h = 1, and we
take the final time N = 60. The plots for one typical sample experiment
are shown in Figs. 7.8-7.10. (The samplie noise for the sample rumn shown

in Figs. 7.8-7.10 is the same as that shown in Figs. 7.35~7.7.) Comparing

this set of experiments with the last, we note that more or less the sanxe

phenomenon occurred in both sets of experiments. The final estimate in b

LS la)
is way off its true value, in fact bl(k/k) and b?(k/k) are opposite in

2

the adaptive gains are adjusted accordingly so that the values of the

sign with those of bl and b, respectively; but interestingly enough

0.L.F.0. control sequence and the truly optimal control sequence are almost

the same. This set of experiments indicates vet slower convergence (if

there is any).
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Tig., 7.8 COMPARISON BETWEEN OPTIMAL TRAJECTORY WHEN THE GAIN VECIOR IS KNOWN AND
THE 0.L.T.0. TRAJECTORY ASSUMING THE GAIN VECTOK IS UNKMNOWN. THE SYSTEM
BEING CONTEOLLED HAS SYSTEM FUNCTION  (S+3) (642) . WE GUESS INITIALLY
(S+1) (S2+25+3)
THAT THERE ARE 50 7 EROES. THE NOISE SAMPLE IS THE SAME FOR BOTH CASES.
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“ote that in both sets of experiments even if the estimate of b does

not converge to the true b, the truly optimal trajectory and O0.L.F.O.

trajectory are almost the same after the transient period.

Intuitively, the results are reasonable. Since we have not told the
prcblem to identify b, it will not do so unless the identification is
absolutely necessary. The experimental results verified our theoretical
deduction (see cnapter 6, section 6.6).

The experiments seem to indicate that for stable sysiem, the choice of

initial guess will not greatly influence the 0.L.F.0. trajectory, vut will

affect the convergence rate for the estimate in the gain parameters, b.

Remark: 1In each set of experiments discussed above, the number of
sample runs is not enough to enable us to draw specific statistical con-
clusions; yet the regularity in the sample runs enable us to draw some crude
conclusions.

From the experiments, we may draw the following conclusions regarding
the 0.L.F.0. control system,

(1) The rate of convergence seems to be very dependent on the
stability of the system. For unstable systems, the convergence
rate seems to be faster compared to that for stable systems.
This verifies our theoretical predictions made in chapter 6,
section 6.6.

(2) It seems that large controls will help identification of the
unknown gain parameters, and so ccnvergence rate seems to relate
directly to the magnitude of the control action. This again
agrees with our intuitive remark made in chapter 6, section 6.3.

(3) For unstable systems, the rate of convergence seems to be

fairly independent of the initial guess on the unknown gain,

7 Te?
e —— p—— San © e At Fo— ke
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whareas for stable systems, the convergence rate may be quite
dependent on the initial guess on the unknown gain.

For unstzble systems, the O,L.F.0. trajectory will depend on the
the initial guess in Ef’ but then for stable systems, the 0.L.F.O.
trajectory will not wvary drastically when we vary the initial
guess in Ef.
For the unstable system, the 0.L.F.0. trajectory seems to follow
closely its input-free trajectory in the beginning, until the
diverging phenomenon tells the identifier to send back large
controls for identification purposes. This causes some overshoots
in the trajectory. The magnitude of the maximum overshoot seems
to relate inversely with the values for the weighting constant h
on control. For gtable systems, simultaneous identification and
control seem to be carried out in the beginning. Since the system
is stable, with little countrol energy, the state will go to zero,
so after some time period when the state is near the origin,
approximately zero contr>l is applied thus terminating the
identification of b.

Lastly, the author would like to comment on the computational
feasibility of the proposed scheme. The above experiments were
simulated using an IBM 360/64/40 system. It was found that

the actual computation of the O.L.F.C. control sequence can be
carried out almost in real time for N = 40; i.e. in about 0.2
seconds, the following tasks were accomplished: One step computa-
tion of (6.3.19)-(6.3.32) (6 vector difference equation and 6 x 6
matrix difference equation), the parameter computations (6.3.34)-

(6.3.37), and the computation of K(k/k) (6.3.32), $(k)(6.3.39)
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{one 12 x 12 matrix difference equaticn and one 3 x 3 matrix difference

equation, computed in a time-backward directien directly for k < 40 steps,

k=0, 1, ..., N-1).

3

: Further Experimental Studies

The following experiments are suggested so as to provide a desper

LP7 ettt LS TR A e

understanding on this class of problems.

T

(1) Implement a window-shifting O.L.F.0. control sequence as was sug-

gested in section 6.7. This will allow s to consider control
over ar infinite time span for k =0, I, ... . To increase the

convergent rate, apply contrcl sequence

! . Wy 1 o) e
3 T (k) = * (7.24)
if u (k) < ¢

[y]

L i ||z ll2p iyl < 2,

The values for ¢ and ¢ are adjusted through experimentatica.

/)] 2 6, and T (K) = u (k) if

) {2) Design a computer program which will enable us to study the
- statistical behavior of the O.L.F.0. control system. For a
; fixed assumed structure of the system and the same weighting

coastanis, ctudy the statistical behavior of the system and the

average convergence rate of the suboptimal control svstem to the

¢ optimal system. Vary the weighting constant h on the control,
and investigate, in a statistical sense, how it affects the
average maximum overshoot in the trajectory.

(3) To avoid large overshoots in the beginning for the unstable
system, one may wish to have a large weighting factor h for

the control energy in the beginning, and when the true value of

a,
S, e oo

S L 4 o 154
2 T

L Fatotrtacan
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B3 is exaszly recovered, we may want h = C.1. Thus wve =ay

vrefer © to e time varying

B{x) = g{&) + 0.2 (7.25)

where g(k) is oonincreazsing and g(k} » 9 as k » =, Such an
od-bot sppreach ney ezd to z well behaved 0.L.F.0. control
systam.

The 2ssumptien that B - Q(_igo » §) is mede for mathematical con-
veaiexce. Im acteal practice, §° and Eba =2y aot be avazilable.
Tith zhe results in chapter 3, observability of the pair (3, 2)

is suificient to a2ssure thzt independent of the guess on §°,

ssyrptotic convergencs of the estimate c¢f b is obtained. But

(2]

t would 2 inporzant to find out how gifferent assumptions on

D a8 . will e
o -0

[
"

ect the rate of coavergence for both stable
and unstable systens.

By varving the sanpling rate, one can study the effect of sampling
pericd to the bubavior of the overall suboptizal 0.L.F.0. coatrol

systea.




CHAPTER VIIX

3 CONCLUSINNS AND SUGGESTIONS FOR FURTHER RESEARCH

P g 4344

The cbserver theory for discrete and continuous time linear systems
have been developed in parallel. We showed that ome can view an obsarver-

estimator as a learning device which is used to learn all recoverable

11 ¢ 1 © A0 0/ iA ki ey
.

uncertainties while taking the statistical behavior of all inherent

disturbances into consideration. The class of obsecvers—-estimators which

T T

will do the iearning optimally in the mean square sense is also derived.
Such optimal classes of observers—estimators can be incorpsrated in the
overall optimal control system, and for this reason analytical studies on

the optimum class of observers-estimators was carried out in detail. It is

SRSt i

noted that observers theory includes Kalman filtering and deterministic
exponential estimation as special cases.

The stochastic control of linear systems with known dynamics was
treated in detail. For this class of problems, we have imperfect informa-
tion due tc the fact that there are inherent noise disturbance and unknown
initial condition of the system being controlled. It was proved that for
i quadratic criteria the optimal controller consists of a "learner" and a set
of feedback gains. The learner is realized by an optimum observer-estimator.

. The result is also known as the Separation Theorem. Physically, the

} operating function of the optimum observer-estimator is to learn the current
; state of the system. It can be shown that if the curreut state of the

. system is asymptotically recoverable and if the syscem can be stabilized

by adapting some feedback gain, then the overall optimal stochastic system
will have nice behavior. The appreoach taken in studying this specific

s class of problems can be extended to more general classes of problems

X where the cost criteria are other than quadratic.
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In the next level, we considered control of linear discrete systems
with unknown gain parameters. Since the truly optimal control sequence
cannot be cbtained because cf the "curse of dimensionality." we look fer a
computationally feasibdle suboptimal control sequence. Prompted by
physical consideration and computational considerations, we used the open-
loop feedback optimal approach to derive the 0.L.F.0. control sequence. It
was proved that the 0.L.F.0. -ontroller consists of a learner, which we call
an identifier, and a feedback gain plus correction term. The identifier
is realized by an optimal observer-estimator whose operating function is to
learn the current state and current unknown gain. Analytical studies were
done on the overall O.L.F.0. control system. It was proved that if the
initial state and unknown gain parameters are recoverable. then the overall
0.L.F.0. control system will asymptotically converge to the truly optimal
stochastic control system, The derived results seem to be computationally
feasible. The computation of the 0.L.F.0. control is done on~line. For
all time k=0, 1, ..., N-1, we have to compute a one-step 2n-vector
difference equation and a one-step 2n > 2n matrix difference equation
(identification equations), then a (N - k)-steps n-vector difference equa-
tion and a (N - k)-steps n x n matrix difference equation (parameters
computation), and finally a (N - k)-steps (n+l)n x (n+l)n matrix difference
equation (computation of ‘g (k/k) (see Fig. 6.2 and Fig. 6.3). The vectors
and matrices being stored as time unit advances are x(k/k), b(k/k), and

z(k/k) which require a total of (2n2 + 3n) memory locations. (Note that

z(k/k) is symmetric and this cuts down the storage memory requirements.)
Using the theoretical results derived, a computer program is developed

to study the control of a variety of third order systems with known polies

but unknown zeroes. Sample runs were made mainly to study the convergence
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rate of the 0.L.F.0Q. contrcl system to the truly optimal system. The
experimental results seem Lo indicate that the rate of convergence depends
on the structure of the system: stable plants appear to have slow con-
vergence, whereas unstable plants will result ia fast convergence. For
stable system, the convergence rate depends highly on the initial guess of
the unknown zeroes locations; vut for unstable stable, it appears that the
rate of convergence is guite insensitive to the initial guess of the
unknown zeroes locations. HMore experiments must be performed so as toc
obtain a deeper understanding on this class of problems and obtain
engineering rules-of-thumb.

Directions of further research which are related directly to this
werk are suggested near the end of each chapter when appropriate. In the
following, a list of topics is given, which the author thinks is a continua-
tion of this present work. Some possible approaches to these different
problems are suggested and the applicability of the results obtained in
this tliesis to these different problems is discussed.

(A) Stochastic Control of Continuous-Time Linear Systems With Unknown Gains

We consider a continuous analog of (6.2.1)

x(t) = A(t)x(t) + b(t)u(t) + £(t) ; x(e ) ~ G, zxo)

8% (6.8.1)
y(t) = C(t)x(t) + n(t)

the gain vector b(t) is unknown but satisfies the stochastic differential

equation:

b(t) = G()b(t) + y(t) = bt )~ Gy Zy,) (6.8.2)

~bo

The noises, £(t), n(t), and y(t) are assumed to be white Gaussian with

knewn statistical law. The performance measure is
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T

) = E{_}_:_‘(T) Fx(D + | [x7(t) W(t) x(t) + uz(t)h(t)]dt} (6.8.3
t
)

The control problem is to find u(1), T ¢ [to, T), such that (6.8.3) is
minimized subject to dynamic constraints, (6.8.1) and (6.8.2). instead of
first taking a sample data version of the probler and then applying the
derived results in chapter 6 (see chapter 7), e can apply the 0.L.F.O.
approach to the continuous time system directly. One would then obtain a
continuous time identifier which estimates the current state and current
gain in continuous time. The results in chapter 4 can be applied. As
analogous to the discrete time version, we would then formulate a deterministic
(continuous-time) open-loop coatrol problem. One may expect the overall
0.L.F.0. control system in the continuous—-time case will be similar in
structure to that in the discrete version. The main difficulty lies in the
capability of computing the O0.L.F.0. adaptive gain and the correction term
in continuous time. Some medifications can be made which take computation
capatility into account. One approach may be that we resolve the open-loop
problem only in discrete time, t = G, 3, 24, 34, ..., even though we have
continuous time observatiorn.

(B) Control With Unknown Dynamics

Consider the problem of controlling an unknown system &, (6.2.1),

where the matrix A(k), * =0, 1, 2, ..., is unknown but satisfies some
linear difference equation. The statistical laws of the noise are assumed
known. OQur objective is to control the system & using the quadratic
criteria. Formally, the truly optimal control can be obtained if we can
solve Bellman's equation. Unfortunately, this is impossible with the

present stage of development of computer technology. Therefore, one can

look for suboptimal but computationally feasible solutions to the problem.
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It would be desirable if we can have analytical studies on the derived

suboptimal contrel system. Different approathes guided by engineering

intuition are possible. An apprcach, which is a combination of maximum
; likelihood and O.L.F.0. is suggested where an analytic study of the be-
havior of the overall suboptimal system may ba possible,

Consider the augmented system § given by (6.5.24). Let U(0, k-1)

be applied and Y l)(O,R) is observed. The most probable estimate

5 U(G,k~
X (maximum likelihood estimate) of {é(i)}x-l, vhich ie denoted by {é;(i)}k—;,
1=0 i=0
~
is obtained by picking {Aﬁi)}& 1 to maximize the conditional probability
i=0

density p({é{iﬂk-liYU(o k'_1)((),1.)) subiect to 2 certain difference equa-
i=0 ’
s tion describing the evoluation of A(i), i =0, 1, ..., k-1. Extrapolate

the estimate of {é(i)}w and the estimates are denoted by {ég(i)}m
i= .

=k i=k’
£ . Assume that {é;(i)}:=o is the true A(i), i =0, 1, ..., and apply the
results of chapter 6. The whole procedure is repeated at every step,
k=206, 1, .... .

Theoretically, this approach has some advantageous features. Using
3 ' Wald's Theorem [68], one will obtain asymptotic consistent (with probability
1) estimate of {é(i)}aloz one can then apply the results of section 6.6 to
; obtain overall asymptoi;c optimal control system.

The difficulty lies in the real time computation of {éﬁ(i)}f 0’
l=

k=0,1, .... using a computer. For references in maximum likelihood

- estimation, see Kashyap [67], Wald [68], Rauch, Tung, and Striebel [44];
: Tor evaluation of likelihood functions of a Gaussian process, see also
Schweppe [69].

(C) Control With Unknown Gain and Imperfectly Known Disturbance

Assume that the matrices A(k), k = 0, 1, ..., are known, the gain

S LY

v P

Piakehiind 0 L
1§t s et gt e o it o
NSt o -

vectors b(k), k = 0, 1, ..., are assumed to be unknown but described bv

T
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6.2.2), (6.2.4), and (5.2.7). The vectors n(k), E(k), y(k), k=0, 1, ....
are independent Gaussian vectors with unknown means and/or covariances. It
is necessary for us to reccver the true means and covariances of the noise
vectors. A combination of maximum likelihood and O0.L.F.0. approach can be
applied to such class of problems.

For references which are related to this class of problems, see Saga
and Husa [70], Taran [71], Kashyap [67].

With some thorough understanding in the problems (A) and (B), we can
then start to investigate the problem of controlling a system where A(k),
b(k), = =10, 1, .... are unknown but satisfy some difference equations, and
the noise vectors are independent Gaussian vectors with unknown means and

variances.
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APPENDIX A

CN THE FSEUDO-INVERSE OF A MATRIX

Let A be an n x m matrix which maps R™ + R, The pseudo-~inverse

of A is denoted by _A# and satisfies the conditions:

1) A'ax=x ; v x€R@A) (A.1)
/3

(2) Ai'z =0 ; v zeNQa) (A.2)

3 é#(z +2z) = é#x + A#g 5 v YyeR @, ze NAY (A.3)

With this definition, we have the following properties:

A @H" =a (A.4)
® ' aa’=d’ (a.5)
© aata=a (A.6)

(E} Let A be an nxm matrix (n 2 m) of rank m. Then
13 -
AV =@ 1 A- (A.7)

For the proofs of (A.4)-(A.7), see Zadah and Desoer {48}, lLevine [23]; for

a different approach to generalized inverse of a matrix, see Penrose [72].
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APPENDIX B

WEINER-:OPF ¥ UATION

Let F(k) 2 F(y@); i =0, 1, ..., k), we have F(i)C F(i+l),
t=0, 1 «..y k=1, and so y(i) is F(k)-measurable for i =10, 1, ..., k.

Using lemma 2.2.6, and lerma 2.2.7, '.c have

E{x(k) y (@)} = E{azgk) x‘(i)/uk)}} = Ef x(k/k) y* ()} (8.1)
i=1, ..., k

By assumptica, w(k) satisfies (3.3.18}, thus
EJG(k) - xC/X)Y ()} =0 1=0,1, coo, k3 k=0, 1, .o, (B.2)

Since both Ww(k), é(k/k) are linear functioals of y(0), ..., y{k), (B.2)

also implies
Ef (k) - x(k/K)) k) - x(k/K)} =0 k=0, 1, .... (B.3)

Thus w(k) = a(k/k) a.s.
The proof of Weiner-Hopf equation for the continuous case is the

same with slight modification, the induced v-algebra F(k) is replaced

rTy
i

by F{z_l(r), Te lt . t), 12(1), Te [to, tl}. And so if

t
wit); t » t, is a random process such that for t > t , w(t) is a

linear furctional of zl(r), T € [to, t), and zz(r), T e [t:o, tl; and

w(t) satisfies
Ew(t) y;(} ={Ex(t) 3}  telt,t) 5 t>¢, (B.4)
Efu(t) ys(of ={E x(0) y5 ) tele, €] 5 e2 ¢ (B.5)

then w(t) = }i(t:,/t) a.s., t > to. (B.4), (B.5) imply the projection
equations (4.3.44).
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APPENDIX C

EQUATIGN FOR ERROR PROCESS (CONTINUOUS TIME CASE)

Let x(t) be a random prccess given by (4.3.1), and w(t) be =

random process satisfying (4.3.19), (4.3.20), and (4.3.16). Define

e(t) 4 w(t) - x(t). Differentiating e(t) and using (4.3.19), (4.3.1),

and (4.3.12):

e(e) = B(t) z(t) + B(£) T(t) ACE) 5(e) - B(£} I(t) Ly () G, (&) w(c)
+ P(t) T(c) B(e) z(£) + B(t) T(e) ¥, () C,(e) x{t)
+ 2(t) I(r) L (e) C,(r) x(t) + B(r) I(t) L, (t) a(t)
+ B(t) 2(c) B(e) ule) + ¥, (e) € L) x{t) + ¥ () &,(t) x(t)
+ ¥, (t) C,(t) ACr) x(t) +V,(t) C,(t) B(t) u(t) + ¥, (e) C,(e) &(0)
- A(t) x(t) - B(t) u(t) - &(t)
= (BLe) + R(£) I(t) B(1)) 2(t) - (i(c) T(t) + P(t) T(t) B(t) I(t))
« x(t) + P(t) T(t) A(t) e(t) - B(t) T(t) L, () &, (t) e(t)

+ P(t) T(t) L, (&) n(t) - 2(r) Tlr) &(t) (C.1)
Since P(t), T(t), Vz(t), gz(t) also satisfy (4.3.16), we have
T(t) B(E) + I(6) B(e) = 0 5 C,(e) B(t) + £,(t) B(t) = 0 (c.2)
and so we have

B(e) + B() 2(6) R() = (I - B(e) T(O)) () = ¥, (2) Cy(r) B(E)

= - ¥, (1) ,(t) P(t) (c.3)

= ¥, (6) C,(t) PAe) T(t)

]

i(t) 1(t) + P(t) i(t) P(t) T(t)

= - ¥, (t) g?_m + ¥, () &y(8) ¥, (t) S, (1) (C.4)

=279~
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Subszituting (C.3) and (C.4) into (C.1) and noting w(t) = P(t) z(t)

+ y_z(t) lz(c), we have

CUPaATR oL /et o7 e pll SN L ]

&) = (@A) - ¥,(0) €,(8) = B() I(r) L, () C (1)) e(t)
+ (U, (t) C,(t) ~ 1) E(r) + B(t) I(t) L, (t) n(t) (C.5)
'E:
§ ’ The initial error is
]
; g(to) = g(to) _g(to) + \_’2(t:o) gz(to)(_:i(to) - -’E(to))
- = R(t)) T )G, - x(e))) = @ - Vy(e) Cyle)) (x) - x(c ))(C.6)
E
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